cross_entropy.cu 5.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

15
#include "paddle/fluid/operators/math/cross_entropy.h"
16

17
#include "paddle/fluid/framework/convert_utils.h"
S
sneaxiy 已提交
18
#include "paddle/fluid/operators/math.h"
19
#include "paddle/fluid/platform/device/gpu/gpu_device_function.h"
20
#include "paddle/fluid/platform/device/gpu/gpu_dnn.h"
21
#include "paddle/fluid/platform/device/gpu/gpu_primitives.h"
22
#include "paddle/phi/backends/gpu/gpu_context.h"
23 24 25 26 27

namespace paddle {
namespace operators {
namespace math {

28
template <typename T, typename LabelT>
29 30 31 32 33
__global__ void CrossEntropyKernel(T* Y,
                                   const T* X,
                                   const LabelT* label,
                                   const int N,
                                   const int D,
34
                                   const int ignore_index) {
35
  CUDA_KERNEL_LOOP(i, N) {
36 37
    auto lbl = static_cast<int64_t>(label[i]);
    PADDLE_ENFORCE(lbl >= 0 && lbl < D || lbl == ignore_index,
38 39
                   "The value of label[%d] expected >= 0 and < %ld, or == %ld, "
                   "but got %ld. Please check input value.",
40 41 42 43
                   i,
                   D,
                   ignore_index,
                   lbl);
44
    Y[i] = ignore_index == lbl
C
chengduo 已提交
45
               ? static_cast<T>(0)
46
               : -math::TolerableValue<T>()(real_log(X[i * D + lbl]));
47 48 49 50
  }
}

template <typename T>
51 52 53
__global__ void SoftCrossEntropyKernel(T* Y,
                                       const T* X,
                                       const T* label,
54 55
                                       const int class_num) {
  int tid = threadIdx.x;
C
chengduo 已提交
56
  T val(0);
57

58 59 60
  int idx = blockIdx.x * class_num + tid;
  int end = blockIdx.x * class_num + class_num;
  for (; idx < end; idx += blockDim.x) {
C
chengduo 已提交
61
    val += math::TolerableValue<T>()(real_log(X[idx])) * label[idx];
62 63
  }

64 65 66
  val = paddle::platform::reduceSum(val, tid, blockDim.x);
  if (threadIdx.x == 0) {
    Y[blockIdx.x] = -val;
67 68 69
  }
}

70 71 72
template <typename T>
struct HardLabelCrossEntropyCUDAFunctorImpl {
 public:
73 74
  HardLabelCrossEntropyCUDAFunctorImpl(T* loss_data,
                                       const T* prob_data,
75 76 77 78
                                       const void* label_data,
                                       const int batch_size,
                                       const int class_num,
                                       const int ignore_index,
79 80
                                       const int block_size,
                                       gpuStream_t stream)
81 82 83 84 85 86 87 88 89 90 91 92 93
      : loss_data_(loss_data),
        prob_data_(prob_data),
        label_data_(label_data),
        batch_size_(batch_size),
        class_num_(class_num),
        ignore_index_(ignore_index),
        block_size_(block_size),
        stream_(stream) {}

  template <typename U>
  void apply() const {
    int grid_size = (batch_size_ + block_size_ - 1) / block_size_;
    CrossEntropyKernel<T, U><<<grid_size, block_size_, 0, stream_>>>(
94 95 96 97 98 99
        loss_data_,
        prob_data_,
        static_cast<const U*>(label_data_),
        batch_size_,
        class_num_,
        ignore_index_);
100 101 102 103 104 105 106 107 108 109 110 111 112
  }

 private:
  T* loss_data_;
  const T* prob_data_;
  const void* label_data_;
  const int batch_size_;
  const int class_num_;
  const int ignore_index_;
  const int block_size_;
  gpuStream_t stream_;
};

113 114
template <typename DeviceContext, typename T>
void CrossEntropyFunctor<DeviceContext, T>::operator()(
115 116 117 118 119 120 121
    const DeviceContext& ctx,
    framework::Tensor* out,
    const framework::Tensor* prob,
    const framework::Tensor* labels,
    const bool softLabel,
    const int ignore_index,
    const int axis_dim) {
122 123 124 125 126
  const T* prob_data = prob->data<T>();
  T* loss_data = out->mutable_data<T>(ctx.GetPlace());

  int batch_size = prob->dims()[0];
  int class_num = prob->dims()[1];
127
#ifdef __HIPCC__
128
  constexpr int kMaxBlockDim = 256;
129
#else
130
  constexpr int kMaxBlockDim = 512;
131
#endif
132

133 134 135 136 137 138 139 140 141
  if (softLabel) {
    const T* label_data = labels->data<T>();
    int block = class_num > kMaxBlockDim
                    ? kMaxBlockDim
                    : pow(2, static_cast<int>(std::log2(class_num)));

    SoftCrossEntropyKernel<T><<<batch_size, block, 0, ctx.stream()>>>(
        loss_data, prob_data, label_data, class_num);
  } else {
142 143 144 145 146 147 148 149
    HardLabelCrossEntropyCUDAFunctorImpl<T> functor(loss_data,
                                                    prob_data,
                                                    labels->data(),
                                                    batch_size,
                                                    class_num,
                                                    ignore_index,
                                                    kMaxBlockDim,
                                                    ctx.stream());
150 151
    framework::VisitDataType(framework::TransToProtoVarType(labels->dtype()),
                             functor);
152
  }
153
}
154

155 156
template class CrossEntropyFunctor<phi::GPUContext, float>;
template class CrossEntropyFunctor<phi::GPUContext, double>;
157 158 159 160
template class CrossEntropyFunctor<phi::GPUContext, phi::dtype::float16>;
#if defined(PADDLE_WITH_CUDA) && CUDNN_VERSION_MIN(8, 1, 0)
template class CrossEntropyFunctor<phi::GPUContext, phi::dtype::bfloat16>;
#endif
161

162 163 164
}  // namespace math
}  // namespace operators
}  // namespace paddle