test_prune.py 37.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
import contextlib
import os
17 18
import unittest

19 20
import numpy as np

21
import paddle
22 23 24 25 26 27 28 29
import paddle.fluid as fluid
import paddle.fluid.framework as framework


class TestPrune(unittest.TestCase):
    def net(self):
        x = fluid.layers.data(name='x', shape=[2], dtype='float32')
        label = fluid.layers.data(name="label", shape=[1], dtype="int64")
C
Charles-hit 已提交
30
        y = paddle.static.nn.fc(x=[x], size=2, activation="softmax")
31 32 33
        loss = paddle.nn.functional.cross_entropy(
            input=y, label=label, reduction='none', use_softmax=False
        )
34
        loss = paddle.mean(x=loss)
35 36 37 38 39 40 41 42 43
        return x, y, label, loss

    def test_prune_with_input(self):
        program = framework.Program()
        startup_program = framework.Program()
        block = program.global_block()
        with fluid.program_guard(program, startup_program):
            (x, y, label, loss) = self.net()
        self.assertEqual(len(block.ops), 5)
44 45 46 47 48 49
        self.assertEqual(
            [op.type for op in block.ops],
            [
                "mul",
                "elementwise_add",
                "softmax",
50
                "softmax_with_cross_entropy",
51 52 53
                "reduce_mean",
            ],
        )
54
        pruned_program = program._prune_with_input(
55 56
            feeded_var_names=[y.name, label.name], targets=[loss]
        )
57
        self.assertEqual(len(pruned_program.global_block().ops), 2)
58 59
        self.assertEqual(
            [op.type for op in pruned_program.global_block().ops],
60
            ["softmax_with_cross_entropy", "reduce_mean"],
61
        )
62 63 64 65 66 67 68 69

    def test_prune(self):
        program = framework.Program()
        startup_program = framework.Program()
        block = program.global_block()
        with fluid.program_guard(program, startup_program):
            (x, y, label, loss) = self.net()
        self.assertEqual(len(block.ops), 5)
70 71 72 73 74 75
        self.assertEqual(
            [op.type for op in block.ops],
            [
                "mul",
                "elementwise_add",
                "softmax",
76
                "softmax_with_cross_entropy",
77 78 79
                "reduce_mean",
            ],
        )
80 81
        pruned_program = program._prune(targets=[loss])
        self.assertEqual(len(pruned_program.global_block().ops), 5)
82 83 84 85 86 87
        self.assertEqual(
            [op.type for op in pruned_program.global_block().ops],
            [
                "mul",
                "elementwise_add",
                "softmax",
88
                "softmax_with_cross_entropy",
89 90 91
                "reduce_mean",
            ],
        )
92 93 94 95 96 97 98 99

    def test_prune_target_not_list(self):
        program = framework.Program()
        startup_program = framework.Program()
        block = program.global_block()
        with fluid.program_guard(program, startup_program):
            (x, y, label, loss) = self.net()
        self.assertEqual(len(block.ops), 5)
100 101 102 103 104 105
        self.assertEqual(
            [op.type for op in block.ops],
            [
                "mul",
                "elementwise_add",
                "softmax",
106
                "softmax_with_cross_entropy",
107 108 109
                "reduce_mean",
            ],
        )
110 111
        pruned_program = program._prune(targets=loss)
        self.assertEqual(len(pruned_program.global_block().ops), 5)
112 113 114 115 116 117
        self.assertEqual(
            [op.type for op in pruned_program.global_block().ops],
            [
                "mul",
                "elementwise_add",
                "softmax",
118
                "softmax_with_cross_entropy",
119 120 121
                "reduce_mean",
            ],
        )
122 123 124 125 126 127 128 129

    def test_prune_target_none(self):
        program = framework.Program()
        startup_program = framework.Program()
        block = program.global_block()
        with fluid.program_guard(program, startup_program):
            (x, y, label, loss) = self.net()
        self.assertEqual(len(block.ops), 5)
130 131 132 133 134 135
        self.assertEqual(
            [op.type for op in block.ops],
            [
                "mul",
                "elementwise_add",
                "softmax",
136
                "softmax_with_cross_entropy",
137 138 139
                "reduce_mean",
            ],
        )
140 141 142
        try:
            pruned_program = program._prune(targets=None)
        except ValueError as e:
143 144
            self.assertIn(
                "All targets of Program._prune_with_input() can only be Variable or Operator",
145 146
                str(e),
            )
147 148


149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
def mock(self, program, feed, fetch, optimize_ops):
    self.prune_called_times += 1
    return program


@contextlib.contextmanager
def _mock_guard(mock):
    original = fluid.Executor._prune_program
    fluid.Executor._prune_program = mock
    yield
    fluid.Executor._prune_program = original


class TestExecutorRunAutoPrune(unittest.TestCase):
    def net1(self):
        x = fluid.layers.data(name='x', shape=[2], dtype='float32')
        label = fluid.layers.data(name="label", shape=[1], dtype="int64")
        w_param_attrs = fluid.ParamAttr(
            name="fc_weight",
            learning_rate=0.5,
            initializer=fluid.initializer.Constant(1.0),
170 171
            trainable=True,
        )
C
Charles-hit 已提交
172 173
        y = paddle.static.nn.fc(
            x=[x], size=2, activation="softmax", weight_attr=w_param_attrs
174
        )
175 176 177
        loss1 = paddle.nn.functional.cross_entropy(
            input=y, label=label, reduction='none', use_softmax=False
        )
178
        loss1 = paddle.mean(x=loss1)
179 180 181
        loss2 = paddle.nn.functional.cross_entropy(
            input=y, label=label, reduction='none', use_softmax=False
        )
182
        loss2 = paddle.mean(x=loss2)
183 184 185 186 187 188 189 190 191 192 193 194
        loss1.persistable = True
        loss2.persistable = True
        return x, y, label, loss1, loss2, w_param_attrs

    def net2(self):
        x1 = fluid.layers.data(name='x1', shape=[2], dtype='float32')
        x2 = fluid.layers.data(name='x2', shape=[2], dtype='float32')
        label = fluid.layers.data(name="label", shape=[1], dtype="int64")
        w1_param_attrs = fluid.ParamAttr(
            name="fc_weight1",
            learning_rate=0.5,
            initializer=fluid.initializer.Constant(1.0),
195 196
            trainable=True,
        )
197 198 199 200
        w2_param_attrs = fluid.ParamAttr(
            name="fc_weight2",
            learning_rate=0.5,
            initializer=fluid.initializer.Constant(1.0),
201 202
            trainable=True,
        )
C
Charles-hit 已提交
203 204
        y1 = paddle.static.nn.fc(
            x=[x1], size=2, activation="softmax", weight_attr=w1_param_attrs
205
        )
C
Charles-hit 已提交
206 207
        y2 = paddle.static.nn.fc(
            x=[x2], size=2, activation="softmax", weight_attr=w2_param_attrs
208
        )
209 210 211
        loss1 = paddle.nn.functional.cross_entropy(
            input=y1, label=label, reduction='none', use_softmax=False
        )
212
        loss1 = paddle.mean(x=loss1)
213 214 215
        loss2 = paddle.nn.functional.cross_entropy(
            input=y2, label=label, reduction='none', use_softmax=False
        )
216
        loss2 = paddle.mean(x=loss2)
217 218 219 220 221 222 223 224 225 226 227
        return (
            x1,
            x2,
            y1,
            y2,
            label,
            loss1,
            loss2,
            w1_param_attrs,
            w2_param_attrs,
        )
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242

    def test_not_prune(self):
        """
        If use_prune = False, the targets which is not fetched will be calculated.
        """
        program = framework.Program()
        startup_program = framework.Program()
        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(program, startup_program):
                (x, y, label, loss1, loss2, w_param_attrs) = self.net1()
                exe = fluid.Executor(fluid.CPUPlace())
                exe.run(startup_program)
                x_np = np.random.random(size=(10, 2)).astype('float32')
                label_np = np.random.randint(1, size=(10, 1)).astype('int64')
243 244 245 246 247 248
                res = exe.run(
                    program,
                    feed={'x': x_np, 'label': label_np},
                    fetch_list=[loss1.name],
                    use_prune=False,
                )
249 250 251 252 253
                self.assertIsNotNone(scope.find_var(loss1.name))
                self.assertIsNotNone(scope.find_var(loss2.name))

    def test_prune_fetches_without_optimizer(self):
        """
254
        Prune operators and variables which are not needed to generate 'fetches'.
255 256 257 258 259 260 261 262 263 264
        """
        program = framework.Program()
        startup_program = framework.Program()
        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(program, startup_program):
                (x, y, label, loss1, loss2, w_param_attrs) = self.net1()
                exe = fluid.Executor(fluid.CPUPlace())
                exe.run(startup_program)
                weight_init = np.array(
265 266
                    scope.find_var(w_param_attrs.name).get_tensor()
                )
267 268
                x_np = np.random.random(size=(10, 2)).astype('float32')
                label_np = np.random.randint(1, size=(10, 1)).astype('int64')
269 270 271 272 273 274
                res = exe.run(
                    program,
                    feed={'x': x_np, 'label': label_np},
                    fetch_list=[loss1.name],
                    use_prune=True,
                )
275
                self.assertIsNotNone(scope.find_var(loss1.name))
276
                self.assertIsNone(scope.find_var(loss2.name))  # loss2 is pruned
277
                weight = np.array(
278 279 280 281 282
                    scope.find_var(w_param_attrs.name).get_tensor()
                )
                np.testing.assert_array_equal(
                    weight_init, weight
                )  # weight not changed
283 284 285

    def test_prune_fetches_with_optimizer(self):
        """
286
        Prune operators and operators which are not needed to generate 'fetches'.
287 288 289 290 291 292 293 294 295 296 297 298 299
        In train mode, the operators and operators in backward and optimization should be kept.
        """
        program = framework.Program()
        startup_program = framework.Program()
        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(program, startup_program):
                (x, y, label, loss1, loss2, w_param_attrs) = self.net1()
                sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.5)
                sgd_optimizer.minimize(loss1)
                exe = fluid.Executor(fluid.CPUPlace())
                exe.run(startup_program)
                weight_init = np.array(
300 301
                    scope.find_var(w_param_attrs.name).get_tensor()
                )
302 303
                x_np = np.random.random(size=(10, 2)).astype('float32')
                label_np = np.random.randint(1, size=(10, 1)).astype('int64')
304 305 306 307 308 309
                res = exe.run(
                    program,
                    feed={'x': x_np, 'label': label_np},
                    fetch_list=[loss1.name],
                    use_prune=True,
                )
310
                self.assertIsNotNone(scope.find_var(loss1.name))
311
                self.assertIsNone(scope.find_var(loss2.name))  # loss2 is pruned
312
                weight = np.array(
313 314 315 316 317
                    scope.find_var(w_param_attrs.name).get_tensor()
                )
                self.assertFalse(
                    np.array_equal(weight_init, weight)
                )  # weight changed
318 319 320 321 322 323 324 325 326 327 328 329 330

    def test_prune_compiled_program(self):
        program = framework.Program()
        startup_program = framework.Program()
        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(program, startup_program):
                (x, y, label, loss1, loss2, w_param_attrs) = self.net1()
                sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.5)
                sgd_optimizer.minimize(loss1)
                exe = fluid.Executor(fluid.CPUPlace())
                exe.run(startup_program)
                compiled_prog = fluid.CompiledProgram(
331 332 333 334
                    program
                ).with_data_parallel(
                    loss_name=loss1.name, places=fluid.CPUPlace()
                )
335
                weight_init = np.array(
336 337
                    scope.find_var(w_param_attrs.name).get_tensor()
                )
338 339
                x_np = np.random.random(size=(10, 2)).astype('float32')
                label_np = np.random.randint(1, size=(10, 1)).astype('int64')
340 341 342 343 344 345
                res = exe.run(
                    compiled_prog,
                    feed={'x': x_np, 'label': label_np},
                    fetch_list=[loss1.name],
                    use_prune=True,
                )
346 347 348
                self.assertIsNotNone(scope.find_var(loss1.name))
                self.assertIsNone(scope.find_var(loss2.name))
                weight = np.array(
349 350 351 352 353
                    scope.find_var(w_param_attrs.name).get_tensor()
                )
                self.assertFalse(
                    np.array_equal(weight_init, weight)
                )  # weight changed
354 355 356 357 358 359 360 361 362 363 364

    def test_prune_feed_without_optimizer(self):
        program = framework.Program()
        startup_program = framework.Program()
        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(program, startup_program):
                (x, y, label, loss1, loss2, w_param_attrs) = self.net1()
                exe = fluid.Executor(fluid.CPUPlace())
                exe.run(startup_program)
                weight_init = np.array(
365 366
                    scope.find_var(w_param_attrs.name).get_tensor()
                )
367 368
                x_np = np.random.random(size=(10, 2)).astype('float32')
                label_np = np.random.randint(1, size=(10, 1)).astype('int64')
369 370 371 372 373 374
                res = exe.run(
                    program,
                    feed={y.name: x_np, 'label': label_np},
                    fetch_list=[loss1.name],
                    use_prune=True,
                )
375 376 377
                self.assertIsNotNone(scope.find_var(loss1.name))
                self.assertIsNone(scope.find_var(loss2.name))
                weight = np.array(
378 379 380 381 382
                    scope.find_var(w_param_attrs.name).get_tensor()
                )
                np.testing.assert_array_equal(
                    weight_init, weight
                )  # weight unchanged
383 384 385 386 387 388 389 390 391 392 393 394 395 396

    def test_prune_feed_with_optimizer(self):
        program = framework.Program()
        startup_program = framework.Program()
        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(program, startup_program):
                (x, y, label, loss1, loss2, w_param_attrs) = self.net1()
                sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.5)
                sgd_optimizer.minimize(loss1)
                exe = fluid.Executor(fluid.CPUPlace())
                exe.run(startup_program)
                x_np = np.random.random(size=(10, 2)).astype('float32')
                label_np = np.random.randint(1, size=(10, 1)).astype('int64')
397 398 399 400 401 402 403 404
                self.assertRaises(
                    Exception,
                    exe.run,
                    program,
                    feed={y.name: x_np, 'label': label_np},
                    fetch_list=[loss1.name],
                    use_prune=True,
                )
405 406 407 408 409
                self.assertIsNotNone(scope.find_var(loss1.name))
                self.assertIsNone(scope.find_var(loss2.name))

    def test_prune_with_cache_program(self):
        '''
410
        When use_prune=True, Executor should cache the pruned program.
411 412 413
        If in next run, the program, feed, fetch are not changed, Executor use the cached pruned program,
        and needn't to call  _prune_program() to prune the program.
        In this test, we hack the Executor._prune_program with a mock function which do nothing but increase
414
        Executor.prune_called_times, and we check prune_called_times equals 1 even if we called exe.run()
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
        10 times with the same input arguments.
        '''
        with _mock_guard(mock):
            exe = fluid.Executor(fluid.CPUPlace())
            exe.prune_called_times = 0
            program = framework.Program()
            startup_program = framework.Program()
            scope = fluid.Scope()
            with fluid.scope_guard(scope):
                with fluid.program_guard(program, startup_program):
                    (x, y, label, loss1, loss2, w_param_attrs) = self.net1()
                    sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.5)
                    sgd_optimizer.minimize(loss1)
                    exe.run(startup_program)
                    x_np = np.random.random(size=(10, 2)).astype('float32')
430 431 432
                    label_np = np.random.randint(1, size=(10, 1)).astype(
                        'int64'
                    )
433
                    for i in range(10):
434 435 436 437 438 439
                        res = exe.run(
                            program,
                            feed={'x': x_np, 'label': label_np},
                            fetch_list=[loss1.name],
                            use_prune=True,
                        )
440 441 442 443 444
                        if i == 0:
                            self.assertEqual(exe.prune_called_times, 1)
                        else:
                            self.assertEqual(exe.prune_called_times, 1)

445 446 447
    def test_prune_with_cache_program2(self):
        '''
        When use_prune=True, Executor should cache the pruned program.
448
        If the only difference in fetch_list is  optimize_ops during multiple runs,
449 450 451 452 453 454 455 456 457 458
        the cache_keys should be different and get different pruned program.
        '''
        with _mock_guard(mock):
            exe = fluid.Executor(fluid.CPUPlace())
            exe.prune_called_times = 0
            program = framework.Program()
            startup_program = framework.Program()
            scope = fluid.Scope()
            with fluid.scope_guard(scope):
                with fluid.program_guard(program, startup_program):
459 460 461 462 463 464 465 466 467 468 469
                    (
                        x1,
                        x2,
                        y1,
                        y2,
                        label,
                        loss1,
                        loss2,
                        w1_param_attrs,
                        w2_param_attrs,
                    ) = self.net2()
470
                    adam_optimizer1 = fluid.optimizer.AdamOptimizer(
471 472
                        learning_rate=0.5
                    )
473 474
                    train1 = adam_optimizer1.minimize(loss1)
                    adam_optimizer2 = fluid.optimizer.AdamOptimizer(
475 476
                        learning_rate=0.5
                    )
477 478 479
                    train2 = adam_optimizer2.minimize(loss2)
                    exe.run(startup_program)
                    x_np = np.random.random(size=(10, 2)).astype('float32')
480 481 482
                    label_np = np.random.randint(1, size=(10, 1)).astype(
                        'int64'
                    )
483 484 485

                    for i in range(10):
                        if i % 2:
486 487 488 489 490 491 492 493 494 495
                            res = exe.run(
                                program,
                                feed={
                                    'x1': x_np,
                                    'x2': x_np,
                                    'label': label_np,
                                },
                                fetch_list=[loss1, loss2, train1],
                                use_prune=True,
                            )
496
                        else:
497 498 499 500 501 502 503 504 505 506
                            res = exe.run(
                                program,
                                feed={
                                    'x1': x_np,
                                    'x2': x_np,
                                    'label': label_np,
                                },
                                fetch_list=[loss1, loss2, train2],
                                use_prune=True,
                            )
507 508 509 510 511 512 513
                        if i == 0:
                            self.assertEqual(exe.prune_called_times, 1)
                        elif i == 1:
                            self.assertEqual(exe.prune_called_times, 2)
                        else:
                            self.assertEqual(exe.prune_called_times, 2)

514 515
    def test_prune_with_cache_compiled_program(self):
        '''
516
        When use_prune=True, Executor should cache the pruned program.
517 518 519
        If in next run, the program, feed, fetch are not changed, Executor use the cached pruned program,
        and needn't to call  _prune_program() to prune the program.
        In this test, we hack the Executor._prune_program with a mock function which do nothing but increase
520
        Executor.prune_called_times, and we check prune_called_times equals 1 even if we called exe.run()
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
        10 times with the same input arguments.
        '''
        with _mock_guard(mock):
            exe = fluid.Executor(fluid.CPUPlace())
            exe.prune_called_times = 0
            program = framework.Program()
            startup_program = framework.Program()
            scope = fluid.Scope()
            with fluid.scope_guard(scope):
                with fluid.program_guard(program, startup_program):
                    (x, y, label, loss1, loss2, w_param_attrs) = self.net1()
                    sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.5)
                    sgd_optimizer.minimize(loss1)
                    exe.run(startup_program)
                    x_np = np.random.random(size=(10, 2)).astype('float32')
536 537 538
                    label_np = np.random.randint(1, size=(10, 1)).astype(
                        'int64'
                    )
539
                    compiled_prog = fluid.CompiledProgram(
540 541 542 543
                        program
                    ).with_data_parallel(
                        loss_name=loss1.name, places=fluid.CPUPlace()
                    )
544
                    for i in range(10):
545 546 547 548 549 550
                        res = exe.run(
                            compiled_prog,
                            feed={'x': x_np, 'label': label_np},
                            fetch_list=[loss1.name],
                            use_prune=True,
                        )
551 552 553 554 555 556 557
                        if i == 0:
                            self.assertEqual(exe.prune_called_times, 1)
                        else:
                            self.assertEqual(exe.prune_called_times, 1)

    def test_prune_with_multi_optimizers(self):
        '''
558
        If there are multiple optimizers in the program, we can run specific one by
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
        pass the return of optimize.minimize() to fetch_list.
        '''
        exe = fluid.Executor(fluid.CPUPlace())
        program = framework.Program()
        startup_program = framework.Program()
        scope = fluid.Scope()
        # do not use_prune
        with fluid.scope_guard(scope):
            with fluid.program_guard(program, startup_program):
                (x, y, label, loss1, loss2, w_param_attrs) = self.net1()
                sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.5)
                train1, _ = sgd_optimizer.minimize(loss1)
                cloned_program = program.clone()
                train2, _ = sgd_optimizer.minimize(loss2)
                exe.run(startup_program)
                x_np = np.random.random(size=(10, 2)).astype('float32')
                label_np = np.random.randint(1, size=(10, 1)).astype('int64')
576 577 578 579 580 581
                res = exe.run(
                    program,
                    feed={'x': x_np, 'label': label_np},
                    fetch_list=[loss1.name],
                    use_prune=False,
                )
582
                weight_without_prune = np.array(
583 584
                    scope.find_var(w_param_attrs.name).get_tensor()
                )
585 586 587 588 589

        scope = fluid.Scope()
        # use_prune
        with fluid.scope_guard(scope):
            exe.run(startup_program)
590 591 592 593 594 595
            res = exe.run(
                program,
                feed={'x': x_np, 'label': label_np},
                fetch_list=[loss1.name, train1],
                use_prune=True,
            )
596
            weight_with_prune = np.array(
597 598
                scope.find_var(w_param_attrs.name).get_tensor()
            )
599 600 601 602 603

        # expected
        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            exe.run(startup_program)
604 605 606 607 608 609
            exe.run(
                cloned_program,
                feed={'x': x_np, 'label': label_np},
                fetch_list=[loss1.name],
                use_prune=False,
            )
610
            weight_expected = np.array(
611 612
                scope.find_var(w_param_attrs.name).get_tensor()
            )
613

614
        np.testing.assert_array_equal(weight_with_prune, weight_expected)
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
        self.assertFalse(np.array_equal(weight_without_prune, weight_expected))

    def test_prune_with_multi_devices(self):
        '''
        When training model with multi_devices, the pruned CompiledProgram should share same local scopes.
        This test the correctness.
        '''
        exe = fluid.Executor(fluid.CPUPlace())
        program = framework.Program()
        startup_program = framework.Program()
        scope = fluid.Scope()
        os.environ['CPU_NUM'] = str(2)
        # do not use_prune
        with fluid.scope_guard(scope):
            with fluid.program_guard(program, startup_program):
630 631 632 633 634 635 636 637 638 639 640
                (
                    x1,
                    x2,
                    y1,
                    y2,
                    label,
                    loss1,
                    loss2,
                    w1_param_attrs,
                    w2_param_attrs,
                ) = self.net2()
641
                adam_optimizer1 = fluid.optimizer.AdamOptimizer(
642 643
                    learning_rate=0.5
                )
644 645 646
                train1 = adam_optimizer1.minimize(loss1)
                cloned_program = program.clone()
                adam_optimizer2 = fluid.optimizer.AdamOptimizer(
647 648
                    learning_rate=0.5
                )
649 650 651 652 653
                train2 = adam_optimizer2.minimize(loss2)
                exe.run(startup_program)
                x_np = np.random.random(size=(10, 2)).astype('float32')
                label_np = np.random.randint(1, size=(10, 1)).astype('int64')
                compiled_prog1 = fluid.CompiledProgram(
654 655 656 657
                    program
                ).with_data_parallel(
                    loss_name=loss1.name, places=[fluid.CPUPlace()] * 2
                )
658
                compiled_prog2 = fluid.CompiledProgram(
659 660 661 662
                    program
                ).with_data_parallel(
                    loss_name=loss2.name, places=[fluid.CPUPlace()] * 2
                )
663 664
                for i in range(10):
                    if i % 2 == 1:
665 666 667 668 669 670 671 672 673
                        res = exe.run(
                            compiled_prog1,
                            feed=[
                                {'x1': x_np[0:5, :], 'label': label_np[0:5, :]},
                                {'x1': x_np[5:, :], 'label': label_np[5:, :]},
                            ],
                            fetch_list=[loss1.name, train1],
                            use_prune=True,
                        )
674
                    else:
675 676 677 678 679 680
                        res = exe.run(
                            compiled_prog2,
                            feed={'x2': x_np, 'label': label_np},
                            fetch_list=[loss2.name, train2],
                            use_prune=True,
                        )
681
                weight1 = np.array(
682 683
                    scope.find_var(w1_param_attrs.name).get_tensor()
                )
684 685 686 687 688 689
        # expected
        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            exe.run(startup_program)
            for i in range(10):
                if i % 2 == 1:
690 691 692 693 694 695
                    exe.run(
                        cloned_program,
                        feed={'x1': x_np, 'x2': x_np, 'label': label_np},
                        fetch_list=[loss1.name],
                        use_prune=False,
                    )
696
            weight2 = np.array(scope.find_var(w1_param_attrs.name).get_tensor())
697
        np.testing.assert_allclose(weight1, weight2, rtol=1e-05)
698 699 700

    def test_prune_program_with_tupe_in_fetch_list(self):
        '''
701
        If there are multiple optimizers in the program, we can run specific one by
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
        pass the return of optimize.minimize() to fetch_list.
        '''
        exe = fluid.Executor(fluid.CPUPlace())
        program = framework.Program()
        startup_program = framework.Program()
        scope = fluid.Scope()
        # do not use_prune
        with fluid.scope_guard(scope):
            with fluid.program_guard(program, startup_program):
                (x, y, label, loss1, loss2, w_param_attrs) = self.net1()
                sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.5)
                train1 = sgd_optimizer.minimize(loss1)
                cloned_program = program.clone()

                train2 = sgd_optimizer.minimize(loss2)
                exe.run(startup_program)
                x_np = np.random.random(size=(10, 2)).astype('float32')
                label_np = np.random.randint(1, size=(10, 1)).astype('int64')

721 722 723 724 725 726
                res = exe.run(
                    program,
                    feed={'x': x_np, 'label': label_np},
                    fetch_list=[loss1.name],
                    use_prune=False,
                )
727 728

                weight_without_prune = np.array(
729 730
                    scope.find_var(w_param_attrs.name).get_tensor()
                )
731 732 733 734 735

        scope = fluid.Scope()
        # use_prune
        with fluid.scope_guard(scope):
            exe.run(startup_program)
736 737 738 739 740 741
            res = exe.run(
                program,
                feed={'x': x_np, 'label': label_np},
                fetch_list=[loss1.name, train1],
                use_prune=True,
            )
742
            weight_with_prune = np.array(
743 744
                scope.find_var(w_param_attrs.name).get_tensor()
            )
745 746 747 748 749

        # expected
        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            exe.run(startup_program)
750 751 752 753 754 755
            exe.run(
                cloned_program,
                feed={'x': x_np, 'label': label_np},
                fetch_list=[loss1.name],
                use_prune=False,
            )
756
            weight_expected = np.array(
757 758
                scope.find_var(w_param_attrs.name).get_tensor()
            )
759

760
        np.testing.assert_array_equal(weight_with_prune, weight_expected)
761 762 763 764 765 766 767 768 769 770 771 772
        self.assertFalse(np.array_equal(weight_without_prune, weight_expected))

    def test_prune_program_partial_parameter_updated(self):
        """
        When running startup program, all parameters declared will be initialized.
        When running main program with prune=True, the pruned parameters will exist in scope and stay unchanged.
        """
        program = framework.Program()
        startup_program = framework.Program()
        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(program, startup_program):
773 774 775 776 777 778 779 780 781 782 783
                (
                    x1,
                    x2,
                    y1,
                    y2,
                    label,
                    loss1,
                    loss2,
                    w1_param_attrs,
                    w2_param_attrs,
                ) = self.net2()
784 785 786 787 788 789 790 791 792
                loss1.persistable = True
                loss2.persistable = True
                sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.5)
                train1 = sgd_optimizer.minimize(loss1)
                sgd_optimizer1 = fluid.optimizer.SGD(learning_rate=0.5)
                train2 = sgd_optimizer1.minimize(loss2)
                exe = fluid.Executor(fluid.CPUPlace())
                exe.run(startup_program)
                weight1_init = np.array(
793 794
                    scope.find_var(w1_param_attrs.name).get_tensor()
                )
795
                weight2_init = np.array(
796 797
                    scope.find_var(w2_param_attrs.name).get_tensor()
                )
798 799 800
                x_np = np.random.random(size=(10, 2)).astype('float32')
                label_np = np.random.randint(1, size=(10, 1)).astype('int64')

801 802 803 804 805 806
                res = exe.run(
                    program,
                    feed={'x1': x_np, 'label': label_np},
                    fetch_list=[loss1.name, train1],
                    use_prune=True,
                )
807 808 809 810 811
                self.assertIsNotNone(scope.find_var(w1_param_attrs.name))
                self.assertIsNotNone(scope.find_var(w2_param_attrs.name))
                self.assertIsNotNone(scope.find_var(loss1.name))
                self.assertIsNone(scope.find_var(loss2.name))
                weight1 = np.array(
812 813
                    scope.find_var(w1_param_attrs.name).get_tensor()
                )
814
                weight2 = np.array(
815 816 817 818 819 820 821 822
                    scope.find_var(w2_param_attrs.name).get_tensor()
                )
                self.assertFalse(
                    np.array_equal(weight1_init, weight1)
                )  # weight changed
                np.testing.assert_array_equal(
                    weight2_init, weight2
                )  # weight2 unchanged
823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842

    def test_prune_override_use_prune(self):
        '''
        If optimize_ops in provided in the fetch_list, the argument use_prune is always override to True.
        '''
        exe = fluid.Executor(fluid.CPUPlace())
        program = framework.Program()
        startup_program = framework.Program()
        scope = fluid.Scope()
        # do not use_prune
        with fluid.scope_guard(scope):
            with fluid.program_guard(program, startup_program):
                (x, y, label, loss1, loss2, w_param_attrs) = self.net1()
                sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.5)
                train1, _ = sgd_optimizer.minimize(loss1)
                cloned_program = program.clone()
                train2, _ = sgd_optimizer.minimize(loss2)
                exe.run(startup_program)
                x_np = np.random.random(size=(10, 2)).astype('float32')
                label_np = np.random.randint(1, size=(10, 1)).astype('int64')
843 844 845 846 847 848
                res = exe.run(
                    program,
                    feed={'x': x_np, 'label': label_np},
                    fetch_list=[loss1.name],
                    use_prune=False,
                )
849 850

                weight_without_prune = np.array(
851 852
                    scope.find_var(w_param_attrs.name).get_tensor()
                )
853 854 855 856 857

        scope = fluid.Scope()
        # use_prune
        with fluid.scope_guard(scope):
            exe.run(startup_program)
858 859 860 861 862
            res = exe.run(
                program,
                feed={'x': x_np, 'label': label_np},
                fetch_list=[loss1.name, train1],
            )
863
            weight_with_prune = np.array(
864 865
                scope.find_var(w_param_attrs.name).get_tensor()
            )
866 867 868 869 870

        # expected
        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            exe.run(startup_program)
871 872 873 874 875 876
            exe.run(
                cloned_program,
                feed={'x': x_np, 'label': label_np},
                fetch_list=[loss1.name],
                use_prune=False,
            )
877
            weight_expected = np.array(
878 879
                scope.find_var(w_param_attrs.name).get_tensor()
            )
880

881
        np.testing.assert_array_equal(weight_with_prune, weight_expected)
882 883
        self.assertFalse(np.array_equal(weight_without_prune, weight_expected))

884 885 886 887 888 889 890 891 892 893 894
    def test_prune_feed_var_in_fetchlist_1(self):
        # the variable to be fed is not leaf
        program = framework.Program()
        startup_program = framework.Program()
        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(program, startup_program):
                (x, y, label, loss1, loss2, w_param_attrs) = self.net1()
                exe = fluid.Executor(fluid.CPUPlace())
                exe.run(startup_program)
                weight_init = np.array(
895 896
                    scope.find_var(w_param_attrs.name).get_tensor()
                )
897 898
                x_np = np.random.random(size=(10, 2)).astype('float32')
                label_np = np.random.randint(1, size=(10, 1)).astype('int64')
899 900 901 902 903 904
                res = exe.run(
                    program,
                    feed={y.name: x_np, 'label': label_np},
                    fetch_list=[y.name, loss1.name],
                    use_prune=True,
                )
905 906 907 908
                self.assertIsNotNone(scope.find_var(loss1.name))
                self.assertIsNone(scope.find_var(loss2.name))
                self.assertIsNone(scope.find_var(x.name))
                weight = np.array(
909 910 911 912 913
                    scope.find_var(w_param_attrs.name).get_tensor()
                )
                np.testing.assert_array_equal(
                    weight_init, weight
                )  # weight unchanged
914 915 916 917 918 919 920 921 922 923 924 925

    def test_prune_feed_var_in_fetchlist_2(self):
        # the variable to be fed is leaf
        program = framework.Program()
        startup_program = framework.Program()
        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(program, startup_program):
                (x, y, label, loss1, loss2, w_param_attrs) = self.net1()
                exe = fluid.Executor(fluid.CPUPlace())
                exe.run(startup_program)
                weight_init = np.array(
926 927
                    scope.find_var(w_param_attrs.name).get_tensor()
                )
928 929
                x_np = np.random.random(size=(10, 2)).astype('float32')
                label_np = np.random.randint(1, size=(10, 1)).astype('int64')
930 931 932 933 934 935
                res = exe.run(
                    program,
                    feed={x.name: x_np, 'label': label_np},
                    fetch_list=[x.name, loss1.name],
                    use_prune=True,
                )
936 937 938
                self.assertIsNotNone(scope.find_var(loss1.name))
                self.assertIsNone(scope.find_var(loss2.name))
                weight = np.array(
939 940 941 942 943
                    scope.find_var(w_param_attrs.name).get_tensor()
                )
                np.testing.assert_array_equal(
                    weight_init, weight
                )  # weight unchanged
944

945

946 947
if __name__ == '__main__':
    unittest.main()