test_gaussian_random_op.py 3.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import unittest
D
dzhwinter 已提交
18 19
import numpy

20 21 22 23
import paddle.fluid as fluid
import paddle.fluid.core as core
from paddle.fluid.op import Operator
from paddle.fluid.executor import Executor
24 25


26
class TestGaussianRandomOp(unittest.TestCase):
D
dzhwinter 已提交
27 28 29
    def setUp(self):
        self.op_type = "gaussian_random"
        self.inputs = {}
M
mozga-intel 已提交
30 31 32 33 34 35 36 37 38
        self.use_mkldnn = False
        self.init_kernel_type()
        self.attrs = {
            "shape": [1000, 784],
            "mean": .0,
            "std": 1.,
            "seed": 10,
            "use_mkldnn": self.use_mkldnn
        }
D
dzhwinter 已提交
39 40 41

        self.outputs = ["Out"]

42
    def test_cpu(self):
D
dzhwinter 已提交
43
        self.gaussian_random_test(place=fluid.CPUPlace())
44 45

    def test_gpu(self):
46
        if core.is_compiled_with_cuda():
D
dzhwinter 已提交
47
            self.gaussian_random_test(place=fluid.CUDAPlace(0))
48

49
    def gaussian_random_test(self, place):
D
dongzhihong 已提交
50

D
dzhwinter 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
        program = fluid.Program()
        block = program.global_block()
        vout = block.create_var(name="Out")
        op = block.append_op(
            type=self.op_type, outputs={"Out": vout}, attrs=self.attrs)

        op.desc.infer_var_type(block.desc)
        op.desc.infer_shape(block.desc)

        fetch_list = []
        for var_name in self.outputs:
            fetch_list.append(block.var(var_name))

        exe = Executor(place)
        outs = exe.run(program, fetch_list=fetch_list)
        tensor = outs[0]

68 69
        self.assertAlmostEqual(numpy.mean(tensor), .0, delta=0.1)
        self.assertAlmostEqual(numpy.std(tensor), 1., delta=0.1)
70

M
mozga-intel 已提交
71 72 73
    def init_kernel_type(self):
        pass

74

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
class TestGaussianRandomOpError(unittest.TestCase):
    def setUp(self):
        self.op_type = "gaussian_random"
        self.inputs = {}
        self.use_mkldnn = False
        self.attrs = {
            "shape": [1000, 784],
            "mean": .0,
            "std": 1.,
            "seed": 10,
            "use_mkldnn": self.use_mkldnn
        }

        self.outputs = ["Out"]

    def test_errors(self):
        program = fluid.Program()
        with fluid.program_guard(fluid.Program(), program):
            input_data = numpy.random.random((2, 4)).astype("float32")
            block = program.global_block()
            vout = block.create_var(name="Out", dtype='int32')
            normal_initializer = fluid.initializer.NormalInitializer(
                loc=0.0, scale=1.0, seed=0)

            def test_Variable():
                # the input type must be Variable
                normal_initializer(input_data)

            self.assertRaises(TypeError, test_Variable)

            def test_type():
                # dtype must be float32 or float64
                normal_initializer(vout)

            self.assertRaises(TypeError, test_type)


Q
qijun 已提交
112
if __name__ == "__main__":
113
    unittest.main()