compare_kernel.cc 4.9 KB
Newer Older
F
From00 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/compare_kernel.h"

#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/elementwise_base.h"
20
#include "paddle/phi/kernels/impl/compare_kernel_impl.h"
F
From00 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82

namespace phi {

template <typename T,
          typename Context,
          typename Functor,
          typename InverseFunctor>
inline void CompareKernelImpl(const Context& ctx,
                              const DenseTensor& x,
                              const DenseTensor& y,
                              int axis,
                              DenseTensor* out) {
  ctx.template Alloc<bool>(out);
  if (x.dims().size() >= y.dims().size()) {
    funcs::ElementwiseCompute<Functor, T, bool>(
        ctx, x, y, axis, Functor(), out);
  } else {
    funcs::ElementwiseCompute<InverseFunctor, T, bool>(
        ctx, x, y, axis, InverseFunctor(), out);
  }
}

template <typename T, typename Context, typename Functor>
inline void CompareAllKernelImpl(const Context& ctx,
                                 const DenseTensor& x,
                                 const DenseTensor& y,
                                 DenseTensor* out) {
  bool* out_data = ctx.template Alloc<bool>(out);

  if (x.dims() != y.dims()) {
    out_data[0] = false;
  } else {
    DenseTensor tmp;
    tmp.Resize(x.dims());
    ctx.template Alloc<bool>(&tmp);

    if (x.numel() == 1 && y.numel() == 1) {
      bool* tmp_data = tmp.data<bool>();
      tmp_data[0] = Functor()(x.data<T>()[0], y.data<T>()[0]);
    } else {
      funcs::ElementwiseCompute<Functor, T, bool>(
          ctx, x, y, 0, Functor(), &tmp);
    }
    auto tmp_flat = EigenVector<bool>::Flatten(tmp);
    auto out_es = EigenScalar<bool>::From(*out);
    auto& place = *ctx.eigen_device();
    auto reduce_dim = Eigen::array<int, 1>({{0}});
    out_es.device(place) = tmp_flat.all(reduce_dim);
  }
}

}  // namespace phi

PD_REGISTER_KERNEL(less_than,
                   CPU,
                   ALL_LAYOUT,
                   phi::LessThanKernel,
                   bool,
                   int16_t,
                   int,
                   int64_t,
                   float,
83
                   double,
84 85
                   phi::dtype::float16,
                   phi::dtype::bfloat16) {}
F
From00 已提交
86 87 88 89 90 91 92 93 94
PD_REGISTER_KERNEL(less_equal,
                   CPU,
                   ALL_LAYOUT,
                   phi::LessEqualKernel,
                   bool,
                   int16_t,
                   int,
                   int64_t,
                   float,
95
                   double,
96 97
                   phi::dtype::float16,
                   phi::dtype::bfloat16) {}
F
From00 已提交
98 99 100 101 102 103 104 105 106
PD_REGISTER_KERNEL(greater_than,
                   CPU,
                   ALL_LAYOUT,
                   phi::GreaterThanKernel,
                   bool,
                   int16_t,
                   int,
                   int64_t,
                   float,
107
                   double,
108 109
                   phi::dtype::float16,
                   phi::dtype::bfloat16) {}
F
From00 已提交
110 111 112 113 114 115 116 117 118
PD_REGISTER_KERNEL(greater_equal,
                   CPU,
                   ALL_LAYOUT,
                   phi::GreaterEqualKernel,
                   bool,
                   int16_t,
                   int,
                   int64_t,
                   float,
119
                   double,
120 121
                   phi::dtype::float16,
                   phi::dtype::bfloat16) {}
F
From00 已提交
122 123 124 125 126 127 128 129 130
PD_REGISTER_KERNEL(equal,
                   CPU,
                   ALL_LAYOUT,
                   phi::EqualKernel,
                   bool,
                   int16_t,
                   int,
                   int64_t,
                   float,
131
                   double,
132 133
                   phi::dtype::float16,
                   phi::dtype::bfloat16) {}
F
From00 已提交
134 135 136 137 138 139 140 141 142
PD_REGISTER_KERNEL(not_equal,
                   CPU,
                   ALL_LAYOUT,
                   phi::NotEqualKernel,
                   bool,
                   int16_t,
                   int,
                   int64_t,
                   float,
143
                   double,
144 145
                   phi::dtype::float16,
                   phi::dtype::bfloat16) {}
F
From00 已提交
146 147 148 149 150 151 152 153 154 155

PD_REGISTER_KERNEL(equal_all,
                   CPU,
                   ALL_LAYOUT,
                   phi::EqualAllKernel,
                   bool,
                   int,
                   int64_t,
                   float,
                   double) {}