utils.cc 4.4 KB
Newer Older
C
chenjian 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/platform/profiler/utils.h"

17
#include <sstream>
C
chenjian 已提交
18 19 20 21 22 23 24
#include <vector>

#include "glog/logging.h"
#include "paddle/fluid/platform/device/gpu/gpu_info.h"

namespace paddle {
namespace platform {
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

template <>
std::string json_vector<std::string>(
    const std::vector<std::string> type_vector) {
  std::ostringstream res_stream;
  auto count = type_vector.size();
  res_stream << "[";
  for (auto it = type_vector.begin(); it != type_vector.end(); it++) {
    if (count > 1) {
      res_stream << "\"" << (*it) << "\""
                 << ",";
    } else {
      res_stream << "\"" << (*it) << "\"";
    }
    count--;
  }
  res_stream << "]";
  return res_stream.str();
}

C
chenjian 已提交
45
#ifdef PADDLE_WITH_CUPTI
46 47
float CalculateEstOccupancy(uint32_t DeviceId,
                            uint16_t RegistersPerThread,
C
chenjian 已提交
48
                            int32_t StaticSharedMemory,
49 50 51 52 53
                            int32_t DynamicSharedMemory,
                            int32_t BlockX,
                            int32_t BlockY,
                            int32_t BlockZ,
                            float BlocksPerSm) {
C
chenjian 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
  float occupancy = 0.0;
  std::vector<int> device_ids = GetSelectedDevices();
  if (DeviceId < device_ids.size()) {
    const gpuDeviceProp& device_property = GetDeviceProperties(DeviceId);
    cudaOccFuncAttributes occFuncAttr;
    occFuncAttr.maxThreadsPerBlock = INT_MAX;
    occFuncAttr.numRegs = RegistersPerThread;
    occFuncAttr.sharedSizeBytes = StaticSharedMemory;
    occFuncAttr.partitionedGCConfig = PARTITIONED_GC_OFF;
    occFuncAttr.shmemLimitConfig = FUNC_SHMEM_LIMIT_DEFAULT;
    occFuncAttr.maxDynamicSharedSizeBytes = 0;
    const cudaOccDeviceState occDeviceState = {};
    int blockSize = BlockX * BlockY * BlockZ;
    size_t dynamicSmemSize = DynamicSharedMemory;
    cudaOccResult occ_result;
    cudaOccDeviceProp prop(device_property);
70 71 72 73 74 75 76
    cudaOccError status =
        cudaOccMaxActiveBlocksPerMultiprocessor(&occ_result,
                                                &prop,
                                                &occFuncAttr,
                                                &occDeviceState,
                                                blockSize,
                                                dynamicSmemSize);
C
chenjian 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
    if (status == CUDA_OCC_SUCCESS) {
      if (occ_result.activeBlocksPerMultiprocessor < BlocksPerSm) {
        BlocksPerSm = occ_result.activeBlocksPerMultiprocessor;
      }
      occupancy =
          BlocksPerSm * blockSize /
          static_cast<float>(device_property.maxThreadsPerMultiProcessor);
    } else {
      LOG(WARNING) << "Failed to calculate estimated occupancy, status = "
                   << status << std::endl;
    }
  }
  return occupancy;
}
#endif

93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
const char* StringTracerMemEventType(TracerMemEventType type) {
  static const char* categary_name_[] = {"Allocate", "Free"};
  return categary_name_[static_cast<int>(type)];
}

const char* StringTracerEventType(TracerEventType type) {
  static const char* categary_name_[] = {"Operator",
                                         "Dataloader",
                                         "ProfileStep",
                                         "CudaRuntime",
                                         "Kernel",
                                         "Memcpy",
                                         "Memset",
                                         "UserDefined",
                                         "OperatorInner",
                                         "Forward",
                                         "Backward",
                                         "Optimization",
                                         "Communication",
                                         "PythonOp",
                                         "PythonUserDefined",
                                         "MluRuntime"};
  return categary_name_[static_cast<int>(type)];
}

C
chenjian 已提交
118 119
}  // namespace platform
}  // namespace paddle