reshard.py 114.0 KB
Newer Older
C
caozhou 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License

import copy
from functools import reduce

import paddle
import paddle.fluid.core as core
from paddle.utils import unique_name
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.framework import Program, OpProtoHolder
23
from paddle.distributed.fleet.meta_optimizers.common import OpRole
C
caozhou 已提交
24 25
import paddle.fluid.layers.utils as utils
from ..collective import _get_global_env
26
from .dist_context import DistributedContext
27 28 29 30
from .dist_attribute import (
    OperatorDistributedAttribute,
    TensorDistributedAttribute,
)
31
from .process_group import new_process_group, ProcessGroup, _g_process_group_map
32 33 34 35
from .cost import build_comm_desc, CommContext
from .cost import AllgatherOpCost, SendOpCost
from .cost import SliceOpCost, SplitOpCost, ConcatOpCost
from .cluster import Cluster
36
from .utils import print_program_with_dist_attr, is_gradient_clip_op
C
caozhou 已提交
37

38
# NOTE: If op in _g_special_ops or _g_gradient_clip_ops, it will not be resharded.
39
_g_special_ops = ['check_finite_and_unscale', 'update_loss_scaling']
40
_g_gradient_clip_ops = [
41 42 43 44 45
    "sum",
    "sqrt",
    "fill_constant",
    "elementwise_max",
    "elementwise_div",
46
]
47
_g_subblock_ops = ["while", "conditional_block"]
48 49 50 51 52 53 54 55


def get_var_with_recursion(var_name, block, program):
    """Get var in the parent block if not found in the current block"""
    var = None
    if var_name in block.vars:
        var = block.vars[var_name]
    else:
56 57 58 59 60
        var = block._var_recursive(var_name)
        # parent_block = program.blocks[block.parent_idx]
        # if var_name in parent_block.vars:
        #     var = parent_block.vars[var_name]
    assert var is not None, "{} is not found".format(var.name)
61

62
    return var
63

C
caozhou 已提交
64 65 66 67 68 69 70

class AllGatherOpDesc:
    """
    Describe the allgather op in the reshard phase.

    Args:
        group (list): Process group.
71 72
        shape (list): The tensor shape.
        is_bool (bool): Whether allgather bool data. Default: False.
C
caozhou 已提交
73 74
    """

75
    def __init__(self, group, shape, is_bool=False):
C
caozhou 已提交
76 77
        self._group = group
        self._desc = "all_gather"
78 79 80 81 82 83
        self._shape = shape
        self._is_bool = is_bool

    @property
    def is_bool(self):
        return self._is_bool
C
caozhou 已提交
84 85 86 87 88 89 90 91 92

    @property
    def group(self):
        return self._group

    @property
    def desc(self):
        return self._desc

93 94 95 96
    @property
    def shape(self):
        return self._shape

C
caozhou 已提交
97
    def __repr__(self):
98
        return f"op: {self._desc}, group: {self._group}, shape: {self._shape}, is_bool: {self._is_bool}."
C
caozhou 已提交
99 100 101 102 103 104 105 106


class SendOpDesc:
    """
    Describe the send op in the reshard phase.

    Args:
        partition_index (list): The index of partition in complete tensor.
107
        src (int): The source process to send.
C
caozhou 已提交
108
        dst (int): The destination process to receive.
109
        is_bool (bool): Whether send bool data. Default: False.
C
caozhou 已提交
110 111
    """

112
    def __init__(self, partition_index, src, dst, is_bool=False):
C
caozhou 已提交
113 114 115
        self._dst = dst
        self._partition_index = partition_index
        self._desc = "send"
116 117 118 119 120 121 122 123 124 125 126
        self._shape = []
        self._is_bool = is_bool
        self._src = src

    @property
    def src(self):
        return self._src

    @property
    def is_bool(self):
        return self._is_bool
C
caozhou 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139

    @property
    def partition_index(self):
        return self._partition_index

    @property
    def dst(self):
        return self._dst

    @property
    def desc(self):
        return self._desc

140 141 142 143 144 145 146
    @property
    def shape(self):
        if not self._shape:
            for item in self.partition_index:
                self._shape.append(item[1] - item[0])
        return self._shape

C
caozhou 已提交
147
    def __repr__(self):
148
        return f"op: {self._desc}, partition_index: {self._partition_index}, dst: {self._dst}, shape: {self._shape}, is_bool: {self._is_bool}."
C
caozhou 已提交
149 150 151 152 153 154 155 156 157


class RecvOpDesc:
    """
    Describe the recv op in the reshard op.

    Args:
        partition_index (list): The index of partition in complete tensor.
        src (int): The source process to send.
158 159
        dst (int): The destination process to receive.
        is_bool (bool): Whether receive bool data. Default: False.
C
caozhou 已提交
160 161
    """

162
    def __init__(self, partition_index, src, dst, is_bool=False):
C
caozhou 已提交
163 164 165
        self._src = src
        self._partition_index = partition_index
        self._desc = "recv"
166 167 168 169 170 171 172 173 174 175 176
        self._shape = []
        self._is_bool = is_bool
        self._dst = dst

    @property
    def dst(self):
        return self._dst

    @property
    def is_bool(self):
        return self._is_bool
C
caozhou 已提交
177 178 179 180 181 182 183 184 185 186 187 188 189

    @property
    def partition_index(self):
        return self._partition_index

    @property
    def src(self):
        return self._src

    @property
    def desc(self):
        return self._desc

190 191 192 193 194 195 196
    @property
    def shape(self):
        if not self._shape:
            for item in self.partition_index:
                self._shape.append(item[1] - item[0])
        return self._shape

C
caozhou 已提交
197
    def __repr__(self):
198
        return f"op: {self._desc}, partition_index: {self._partition_index}, dst: {self._dst}, shape: {self._shape}, is_bool: {self._is_bool}."
C
caozhou 已提交
199 200 201 202 203 204 205


class SliceOpDesc:
    """
    Describe the slice op in the reshard phase.

    Args:
206 207 208 209
        starts (list): It represents start indices of corresponding axis in ``axes``.
        ends (list):  It represents end indices of corresponding axis in ``axes``.
        axes (list):  Axes that `starts` and `ends` apply to.
        shape (list): The shape of the tensor to be sliced.
C
caozhou 已提交
210 211
    """

212
    def __init__(self, starts, ends, axes, shape=None):
C
caozhou 已提交
213 214 215 216
        self._starts = starts
        self._ends = ends
        self._axes = axes
        self._desc = "slice"
217
        self._shape = shape
C
caozhou 已提交
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234

    @property
    def starts(self):
        return self._starts

    @property
    def ends(self):
        return self._ends

    @property
    def axes(self):
        return self._axes

    @property
    def desc(self):
        return self._desc

235 236 237 238
    @property
    def shape(self):
        return self._shape

C
caozhou 已提交
239
    def __repr__(self):
240 241 242 243
        if self._shape is not None:
            return f"op: {self._desc}, starts: {self._starts}, ends: {self._ends}, axes: {self._axes}, shape: {self._shape}."
        else:
            return f"op: {self._desc}, starts: {self._starts}, ends: {self._ends}, axes: {self._axes}."
C
caozhou 已提交
244 245 246 247 248 249 250


class ConcatOpDesc:
    """
    Describe the concat op in the reshard phase.

    Args:
251
        partition_index_list (list): The list contains all partition index.
C
caozhou 已提交
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
    """

    def __init__(self, partition_index_list):
        self._partition_index_list = partition_index_list
        self._desc = "concat"

    @property
    def partition_index_list(self):
        return self._partition_index_list

    @property
    def desc(self):
        return self._desc

    def __repr__(self):
        return f"op: {self._desc}, partition_index_list: {self._partition_index_list}."


270 271
class Inserter:
    """Insert op required in the reshard process."""
C
caozhou 已提交
272

273
    @staticmethod
274 275 276
    def insert_cast_op(block, idx, tensor, op_role, tensor_type):
        # to avoid name conflict with framework
        new_var_name = paddle.fluid.unique_name.generate_with_ignorable_key(
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
            ".".join(["cast@RESHARD", 'tmp'])
        )
        out = block.create_var(
            name=new_var_name,
            dtype=tensor_type,
            type=tensor.type,
            lod_level=tensor.lod_level,
        )
        cast_op = block._insert_op(
            idx,
            type='cast',
            inputs={'X': [tensor]},
            outputs={'Out': [out]},
            attrs={
                'in_dtype': tensor.dtype,
                'out_dtype': out.dtype,
                'op_role': op_role,
            },
        )
296
        cast_op._set_attr('op_namescope', "/auto_parallel/reshard")
297 298 299 300
        return out

    @staticmethod
    def insert_send_op(block, idx, tensor, src, dst, op_role):
301 302
        """Insert send op into block at the given index."""
        op_type = 'send_v2'
303 304
        # use pair comm group
        process_group = new_process_group([src, dst])
305 306 307 308 309 310 311 312 313 314 315 316
        send_op = block._insert_op(
            idx,
            type=op_type,
            inputs={'X': [tensor]},
            attrs={
                'ring_id': process_group.id,
                'peer': process_group.ranks.index(dst),
                'use_calc_stream': True,
                'op_role': op_role,
                'dynamic_shape': False,
            },
        )
317
        send_op._set_attr('op_namescope', "/auto_parallel/reshard")
318 319

    @staticmethod
320
    def insert_recv_op(block, idx, tensor, src, dst, op_role):
321 322
        """Insert recv op into block at the given index."""
        op_type = 'recv_v2'
323 324
        # use pair group
        process_group = new_process_group([src, dst])
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
        recv_op = block._insert_op(
            idx,
            type=op_type,
            inputs={'X': [tensor]},
            outputs={'Out': [tensor]},
            attrs={
                'ring_id': process_group.id,
                'peer': process_group.ranks.index(src),
                'out_shape': tensor.shape,
                'dtype': tensor.dtype,
                'use_calc_stream': True,
                'op_role': op_role,
                'dynamic_shape': False,
            },
        )
340
        recv_op._set_attr('op_namescope', "/auto_parallel/reshard")
341

342 343 344 345 346
    @staticmethod
    def insert_reset_lod_op(block, idx, X, Y, op_role):
        """Insert reset_lod op into block at the given index."""

        new_var_name = paddle.fluid.unique_name.generate_with_ignorable_key(
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
            ".".join(["reset_lod@RESHARD", 'tmp'])
        )
        reset_lod_out = block.create_var(
            name=new_var_name,
            shape=X.shape,
            type=X.type,
            dtype=X.dtype,
            lod_level=X.lod_level,
        )

        reset_op = block._insert_op(
            idx,
            type="lod_reset",
            inputs={'X': X, 'Y': Y},
            outputs={'Out': reset_lod_out},
            attrs={'op_role': op_role},
        )
364
        reset_op._set_attr('op_namescope', "/auto_parallel/reshard")
365 366
        return reset_lod_out

367 368 369 370 371 372 373
    @staticmethod
    def insert_concat_op(block, idx, tensors, axis, op_role):
        """Insert concat op into block at the given block."""
        inputs = {'X': tensors}
        attrs = {}
        attrs['axis'] = axis
        attrs['op_role'] = op_role
374 375
        # to avoid name conflict with framework
        helper = LayerHelper('concat@RESHARD', **locals())
376
        with paddle.static.program_guard(block.program):
377 378
            out = block.create_var(
                name=paddle.fluid.unique_name.generate_with_ignorable_key(
379 380
                    ".".join([helper.name, 'tmp'])
                ),
381 382 383 384 385
                dtype=tensors[0].dtype,
                shape=None,
                lod_level=tensors[0].lod_level,
                type=tensors[0].type,
                persistable=False,
386 387 388 389 390 391 392 393 394
                stop_gradient=False,
            )
        concat_op = block._insert_op(
            idx,
            type='concat',
            inputs=inputs,
            outputs={'Out': [out]},
            attrs=attrs,
        )
395
        concat_op._set_attr('op_namescope', "/auto_parallel/reshard")
396
        return out
C
caozhou 已提交
397

398
    @staticmethod
399 400 401
    def insert_slice_op(
        block, idx, tensor, starts, ends, axes, new_var_name, op_role
    ):
402
        """Insert slice op into block at the given block."""
403 404 405 406 407 408 409 410 411 412 413 414 415
        # This is a hack to insert split op to get slice tensor
        # 1. [128, 128] => [64, 128]: split
        # 2. [128, 128] => [128, 128]: assign
        # 3. [128, 128] => [64, 64]: slice, it will replaced by multi split
        global_shape = tensor.shape
        slice_shape = [ends[i] - starts[i] for i in range(len(starts))]
        diff_dims = []
        for index, item in enumerate(slice_shape):
            if item != global_shape[index]:
                diff_dims.append(index)

        # use assign
        if len(diff_dims) == 0:
416 417 418 419 420 421 422
            out = block.create_var(
                name=new_var_name,
                dtype=tensor.dtype,
                type=tensor.type,
                shape=slice_shape,
                lod_level=tensor.lod_level,
            )
423 424 425
            inputs = {'X': [tensor]}
            outputs = {"Out": [out]}
            attrs = {"in_place": False}
426 427 428
            slice_op = block._insert_op(
                idx, type="assign", inputs=inputs, outputs=outputs, attrs=attrs
            )
429
            slice_op._set_attr('op_namescope', "/auto_parallel/reshard")
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
            return out

        # use split once
        elif len(diff_dims) == 1:
            diff_dim = diff_dims[0]
            num_or_sections = global_shape[diff_dim] // slice_shape[diff_dim]
            axis = diff_dim
            cur_idx = starts[diff_dim] // slice_shape[diff_dim]
            input_shape = global_shape
            inputs = {'X': tensor}
            attrs = {'num': num_or_sections, 'axis': axis, 'op_role': op_role}
            new_shape = []
            for index, item in enumerate(tensor.shape):
                if index != axis:
                    new_shape.append(item)
                else:
                    new_shape.append(item // num_or_sections)
            with paddle.static.program_guard(block.program):
                outs = [
449 450 451 452 453 454 455 456 457 458 459
                    block.create_var(
                        name=paddle.fluid.unique_name.generate_with_ignorable_key(
                            ".".join(['split@RESHARD', 'tmp'])
                        ),
                        dtype=tensor.dtype,
                        shape=None,
                        type=tensor.type,
                        persistable=False,
                        lod_level=tensor.lod_level,
                        stop_gradient=False,
                    )
460 461 462
                    for i in range(num_or_sections)
                ]
                out = outs[cur_idx]
463 464 465 466 467 468 469
            split_op = block._insert_op(
                idx,
                type="split",
                inputs=inputs,
                outputs={'Out': outs},
                attrs=attrs,
            )
470
            split_op._set_attr('op_namescope', "/auto_parallel/reshard")
471 472 473 474 475 476 477 478 479 480 481
            return out

        # use slice
        else:
            inputs = {'Input': tensor}
            infer_flags = list(1 for i in range(len(axes)))
            attrs = {
                "axes": axes,
                "starts": starts,
                "ends": ends,
                "infer_flags": infer_flags,
482
                'op_role': op_role,
483
            }
484 485 486 487 488 489 490 491 492 493 494 495 496
            out = block.create_var(
                name=new_var_name,
                dtype=tensor.dtype,
                type=tensor.type,
                lod_level=tensor.lod_level,
            )
            slice_op = block._insert_op(
                idx,
                type="slice",
                inputs=inputs,
                outputs={'Out': [out]},
                attrs=attrs,
            )
497
            slice_op._set_attr('op_namescope', "/auto_parallel/reshard")
498
            return out
C
caozhou 已提交
499

500
    @staticmethod
501
    def insert_split_op(block, idx, tensor, num_or_sections, op_role, axis=0):
502
        """Insert split op into block at the given index."""
503
        helper = LayerHelper('split@RESHARD', **locals())
504 505
        input_shape = tensor.shape
        inputs = {'X': tensor}
506 507 508 509 510 511 512
        attrs = {'num': num_or_sections, 'axis': axis, 'op_role': op_role}
        new_shape = []
        for index, item in enumerate(tensor.shape):
            if index != axis:
                new_shape.append(item)
            else:
                new_shape.append(item // num_or_sections)
513 514
        with paddle.static.program_guard(block.program):
            outs = [
515 516
                block.create_var(
                    name=paddle.fluid.unique_name.generate_with_ignorable_key(
517 518
                        ".".join([helper.name, 'tmp'])
                    ),
519 520 521 522 523
                    dtype=tensor.dtype,
                    shape=None,
                    lod_level=tensor.lod_level,
                    type=tensor.type,
                    persistable=False,
524 525 526
                    stop_gradient=False,
                )
                for i in range(num_or_sections)
527
            ]
528 529 530
        split_op = block._insert_op(
            idx, type="split", inputs=inputs, outputs={'Out': outs}, attrs=attrs
        )
531
        split_op._set_attr('op_namescope', "/auto_parallel/reshard")
532
        return outs
C
caozhou 已提交
533

534 535
    @staticmethod
    def insert_fill_constant_op(block, idx, op_role):
C
caozhou 已提交
536
        """Insert fill constant op into block at the given index."""
537 538 539
        # to avoid name conflict with framework
        helper = LayerHelper('fill_constant@RESHARD', **locals())
        # use paddle.int64 as dtype
C
caozhou 已提交
540
        with paddle.static.program_guard(block.program):
541 542
            out = block.create_var(
                name=paddle.fluid.unique_name.generate_with_ignorable_key(
543 544
                    ".".join([helper.name, 'tmp'])
                ),
545 546 547 548
                dtype=paddle.int64,
                shape=None,
                type=core.VarDesc.VarType.LOD_TENSOR,
                persistable=False,
549 550
                stop_gradient=False,
            )
C
caozhou 已提交
551 552 553 554 555
        inputs = {}
        attrs = {'force_cpu': False}
        attrs['str_value'] = str(int("1"))
        attrs['value'] = int("1")
        attrs['dtype'] = out.dtype
556
        attrs['op_role'] = op_role
557 558 559 560 561 562 563 564 565 566
        utils.get_shape_tensor_inputs(
            inputs=inputs, attrs=attrs, shape=[0], op_type='fill_constant'
        )
        fillconstant_op = block._insert_op(
            idx,
            type='fill_constant',
            inputs=inputs,
            outputs={'Out': [out]},
            attrs=attrs,
        )
C
caozhou 已提交
567
        out.stop_gradient = True
568
        fillconstant_op._set_attr('op_namescope', "/auto_parallel/reshard")
C
caozhou 已提交
569 570
        return out

571 572 573 574 575 576 577 578 579 580
    @staticmethod
    def insert_allgather_op(block, idx, tensor, ranks, op_role):
        """Insert allgather op into block at the given index."""
        tensor_list = []
        group = new_process_group(ranks)
        idx_offset = 0

        # instant process group before insert allgather op.
        if not group.is_instantiate():
            # insert fill_constant op
581
            fill_constant_out = Inserter.insert_fill_constant_op(
582 583
                block, idx, op_role
            )
584 585 586
            fill_constant_out.stop_gradient = True

            # insert c_allreduce_sum op
587 588 589 590 591 592
            allreduce_op = block._insert_op(
                idx + 1,
                type="c_allreduce_sum",
                inputs={'X': [fill_constant_out]},
                outputs={'Out': [fill_constant_out]},
                attrs={
593
                    'ring_id': 1000,
594
                    'use_calc_stream': True,
595 596 597
                    'op_role': op_role,
                },
            )
598
            allreduce_op._set_attr('op_namescope', "/auto_parallel/reshard")
599
            # insert c_sync_calc_stream op
600 601 602 603 604
            sync_calc_op = block._insert_op(
                idx + 2,
                type="c_sync_calc_stream",
                inputs={'X': [fill_constant_out]},
                outputs={'Out': [fill_constant_out]},
605 606
                attrs={'op_role': op_role},
            )
607
            sync_calc_op._set_attr('op_namescope', "/auto_parallel/reshard")
608 609 610 611
            idx_offset = 3

        # insert c_allgather op
        op_type = 'c_allgather'
612 613
        # to avoid name conflict with framework
        helper = LayerHelper(op_type + "@RESHARD", **locals())
614
        with paddle.static.program_guard(block.program):
615 616
            allgather_out = block.create_var(
                name=paddle.fluid.unique_name.generate_with_ignorable_key(
617 618
                    ".".join([helper.name, 'tmp'])
                ),
619 620 621 622 623
                dtype=tensor.dtype,
                shape=None,
                lod_level=tensor.lod_level,
                type=tensor.type,
                persistable=False,
624 625 626 627 628 629 630 631 632 633 634 635 636 637
                stop_gradient=False,
            )
        allgather_op = block._insert_op(
            idx + idx_offset,
            type=op_type,
            inputs={'X': [tensor]},
            outputs={'Out': [allgather_out]},
            attrs={
                'ring_id': group.id,
                'use_calc_stream': True,
                'nranks': group.nranks,
                'op_role': op_role,
            },
        )
638
        allgather_op._set_attr('op_namescope', "/auto_parallel/reshard")
639 640 641
        idx_offset += 1

        # insert split op
642 643 644
        split_out = Inserter.insert_split_op(
            block, idx + idx_offset, allgather_out, group.nranks, op_role
        )
645 646 647 648 649
        idx_offset += 1
        tensor_list.extend(split_out)
        return tensor_list, idx_offset

    @staticmethod
650 651 652
    def concat_partitions_with_op(
        partition_tensor_list, tensor, partition_index, block, idx, op_role
    ):
653 654
        """Concat the tensors and insert concat op."""
        if not partition_tensor_list:
C
caozhou 已提交
655
            partition_tensor_list.append((tensor, partition_index))
656 657 658 659
        else:
            i = 0
            has_concat = False
            while i < len(partition_tensor_list):
660 661 662 663 664 665 666
                (
                    concat_axis,
                    first_order,
                    new_partition,
                ) = Resharder.compute_concat_info(
                    partition_tensor_list[i][1], partition_index
                )
667 668
                if concat_axis != -1:
                    has_concat = True
669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
                    _ = (
                        Inserter.insert_concat_op(
                            block,
                            idx[0],
                            [partition_tensor_list[i][0], tensor],
                            concat_axis,
                            op_role,
                        )
                        if first_order == 0
                        else Inserter.insert_concat_op(
                            block,
                            idx[0],
                            [tensor, partition_tensor_list[i][0]],
                            concat_axis,
                            op_role,
                        )
                    )
686 687
                    partition_tensor_list.pop(i)
                    idx[0] += 1
688 689 690 691 692 693 694 695
                    Inserter.concat_partitions_with_op(
                        partition_tensor_list,
                        _,
                        new_partition,
                        block,
                        idx,
                        op_role,
                    )
696 697 698 699 700 701 702 703 704 705 706 707 708
                    break
                i += 1
            if not has_concat:
                partition_tensor_list.append((tensor, partition_index))


class Remover:
    """Remove var and op in the reshard process."""

    @staticmethod
    def remove_no_need_ops(auto_parallel_main_prog, dist_context, rank_id):
        """Remove no need ops in the main program"""
        not_remove_op_ref = [
709 710 711
            "create_py_reader",
            "create_double_buffer_reader",
            "read",
712
        ]
C
caozhou 已提交
713

714 715 716 717
        # NOTE: The nested sub block is not be supported now.
        remove_block_order = []
        for block_idx in Resharder.while_block_info:
            remove_block_order.append(block_idx)
C
caozhou 已提交
718

719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
        for block_idx, block in enumerate(auto_parallel_main_prog.blocks):
            if block_idx not in remove_block_order:
                remove_block_order.append(block_idx)

        # the sub block should be removed first
        for block_idx in remove_block_order:
            remove_op_idx = []
            block = auto_parallel_main_prog.blocks[block_idx]
            ops = block.ops
            vars = block.vars
            for idx, op in enumerate(ops):
                if op.type == "read":
                    dim_list = []
                    for var_name in op.output_arg_names:
                        dim_list.extend(
                            get_var_with_recursion(
735 736 737
                                var_name, block, auto_parallel_main_prog
                            ).shape
                        )
738 739 740 741 742
                    for i in range(idx, -1, -1):
                        if ops[i].type == "create_py_reader":
                            ops[i]._set_attr("shape_concat", dim_list)
                            break
                    continue
743

744 745 746 747
                # replace the input and output of c_sync_comm_stream op when in pipeline scene.
                if op.type == "c_sync_comm_stream":
                    need_save = []
                    for var_name in op.input_arg_names:
748 749 750 751 752 753 754
                        process_mesh = (
                            dist_context.get_tensor_dist_attr_for_program(
                                get_var_with_recursion(
                                    var_name, block, auto_parallel_main_prog
                                )
                            ).process_mesh
                        )
755 756 757 758 759
                        if rank_id in process_mesh.processes:
                            need_save.append(var_name)
                    if not need_save:
                        remove_op_idx.append(idx)
                        continue
760

761 762 763 764
                    proto = OpProtoHolder.instance().get_op_proto(op.type)
                    op.desc.set_input(proto.inputs[0].name, need_save)
                    op.desc.set_output(proto.outputs[0].name, need_save)
                    continue
765

766 767 768 769
                # judge the other op whether should be removed.
                op_dist_attr = dist_context.get_op_dist_attr_for_program(op)
                if op_dist_attr is not None:
                    op_process_mesh = op_dist_attr.process_mesh
770 771 772 773
                    if (
                        rank_id not in op_process_mesh.processes
                        and op.type not in not_remove_op_ref
                    ):
774 775 776
                        remove_op_idx.append(idx)

            for idx in remove_op_idx[::-1]:
777 778
                block._remove_op(idx, sync=False)
            block._sync_with_cpp()
779 780

    @staticmethod
781 782 783
    def remove_no_need_vars(
        auto_parallel_main_prog, dist_params_grads, feed_var_names
    ):
784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
        """Remove no need vars in the main program"""
        for block_idx, block in enumerate(auto_parallel_main_prog.blocks):
            remove_vars = set()
            ops = block.ops
            vars = block.vars
            need_vars = set()
            for op in ops:
                for var_name in op.input_arg_names:
                    if var_name in vars:
                        need_vars.add(var_name)
                for var_name in op.output_arg_names:
                    if var_name in vars:
                        need_vars.add(var_name)
            for var in vars:
                if var not in need_vars:
                    remove_vars.add(var)

            # change dist_params_grads, the optimize op just in block 0.
            if block_idx == 0:
                param_grad_map = {}
                for op in ops:
                    if int(op.attr('op_role')) == int(OpRole.Optimize):
806 807 808 809
                        if (
                            "Param" in op.input_names
                            and "Grad" in op.input_names
                        ):
810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
                            param_name = op.input("Param")[0]
                            grad_name = op.input("Grad")[0]
                            param_grad_map[param_name] = grad_name

                need_remove_idx = []
                for idx, item in enumerate(dist_params_grads):
                    if item[0].name not in param_grad_map.keys():
                        need_remove_idx.append(idx)

                for idx in need_remove_idx[::-1]:
                    dist_params_grads.pop(idx)

                idx = 0
                while idx < len(dist_params_grads):
                    param_name = dist_params_grads[idx][0].name
                    grad_name = dist_params_grads[idx][1].name
                    if grad_name != param_grad_map[param_name]:
                        dist_params_grads[idx] = (
828 829 830
                            vars[param_name],
                            vars[param_grad_map[param_name]],
                        )
831 832 833
                    idx += 1

            for var in remove_vars:
834
                if var in feed_var_names:
835
                    continue
836 837 838
                block._remove_var(var)

    @staticmethod
839 840 841
    def remove_no_need_in_main(
        auto_parallel_main_prog, dist_context, rank_id, dist_params_grads
    ):
842
        """Remove no need vars and ops in the main program."""
843 844 845 846 847 848
        Remover.remove_no_need_ops(
            auto_parallel_main_prog, dist_context, rank_id
        )
        Resharder.change_while_op_input_and_output(
            auto_parallel_main_prog, dist_context
        )
849 850 851 852
        # 'feed_var_names' cannot be removed from auto_parallel_main_prog
        feed_var_names = []
        for var in sum(list(dist_context.serial_feed_vars.values()), []):
            feed_var_names.append(var.name)
853 854 855
        Remover.remove_no_need_vars(
            auto_parallel_main_prog, dist_params_grads, feed_var_names
        )
856 857

    @staticmethod
858 859 860
    def remove_no_need_in_startup(
        auto_parallel_main_prog, auto_parallel_startup_prog
    ):
861 862 863 864 865 866
        """Remove no need vars and ops in the startup program."""
        main_input_vars = set()
        main_ops = auto_parallel_main_prog.global_block().ops
        for op in main_ops:
            for var_name in op.input_arg_names:
                main_input_vars.add(var_name)
867

868 869 870 871 872 873 874 875 876
        startup_block = auto_parallel_startup_prog.global_block()
        startup_output_vars = set()
        startup_ops = startup_block.ops
        for op in startup_ops:
            # skip c_sync_comm_stream op
            if op.type == "c_sync_comm_stream":
                continue
            for var_name in op.output_arg_names:
                startup_output_vars.add(var_name)
877

878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897
        need_vars = set()
        for var_name in startup_output_vars:
            if var_name in main_input_vars:
                need_vars.add(var_name)

        startup_ops = startup_block.ops
        actual_need_vars = set()
        for idx, op in enumerate(startup_ops):
            is_need_op = False
            if op.type == "c_sync_comm_stream":
                continue
            for var_name in op.output_arg_names:
                if var_name in need_vars:
                    is_need_op = True
                    break
            if is_need_op:
                for var_name in op.output_arg_names:
                    actual_need_vars.add(var_name)
                for var_name in op.input_arg_names:
                    actual_need_vars.add(var_name)
898

899 900 901 902 903 904
        remove_vars = set()
        for var_name in startup_block.vars:
            if var_name not in actual_need_vars:
                remove_vars.add(var_name)
        for var in remove_vars:
            startup_block._remove_var(var)
905 906

        remove_op_idx = []
907 908 909
        vars = startup_block.vars
        for idx, op in enumerate(startup_block.ops):
            is_no_need_op = False
910
            if op.type == "c_sync_comm_stream":
911
                var_names = []
912
                for var_name in op.input_arg_names:
913 914 915
                    if var_name in vars:
                        var_names.append(var_name)
                if not var_names:
916
                    remove_op_idx.append(idx)
917 918 919 920
                else:
                    proto = OpProtoHolder.instance().get_op_proto(op.type)
                    op.desc.set_input(proto.inputs[0].name, var_names)
                    op.desc.set_output(proto.outputs[0].name, var_names)
921
                continue
C
caozhou 已提交
922

923 924 925 926 927 928
            for var_name in op.output_arg_names:
                if var_name not in vars:
                    is_no_need_op = True
                    break
            if is_no_need_op:
                remove_op_idx.append(idx)
929
        for idx in remove_op_idx[::-1]:
930 931
            startup_block._remove_op(idx, sync=False)
        startup_block._sync_with_cpp()
C
caozhou 已提交
932 933


934 935 936
class Resharder:
    """
    Reshard tensor in the program according to its distributed attribute and corresponding op distributed attribute.
937

938 939 940 941 942 943 944 945
    Args:
        auto_parallel_main_prog (Program): An auto parallel main program.
        auto_parallel_startup_prog (Program): An auto parallel startup program.
        rank_id (int): The process id.
        dist_context (DistributedContext): The distributed context of this rank.
        dist_params_grads (list): The list contains the tuple of param and grad.
        batch_size (int): The batch size. Default: None.
    """
946

947 948
    while_block_info = {}

949 950 951 952 953 954 955 956 957 958 959 960 961
    def __init__(
        self,
        auto_parallel_main_prog,
        auto_parallel_startup_prog,
        rank_id,
        dist_context,
        dist_params_grads,
        batch_size=None,
    ):
        assert isinstance(auto_parallel_main_prog, Program), (
            "The type of auto_parallel_main_prog should be Program, "
            "but got {}.".format(type(auto_parallel_main_prog))
        )
962
        if auto_parallel_startup_prog is not None:
963 964 965 966 967 968 969 970 971 972 973 974 975
            assert isinstance(auto_parallel_main_prog, Program), (
                "The type of auto_parallel_startup_prog should be Program or None, "
                "but got {}.".format(type(auto_parallel_startup_prog))
            )
        assert isinstance(
            rank_id, int
        ), "The type of rank_id should be int, " "but got {}.".format(
            type(rank_id)
        )
        assert isinstance(dist_context, DistributedContext), (
            "The type of dist_context should be DistributedContext, "
            "but got {}.".format(type(dist_context))
        )
976

977
        if batch_size is not None:
978 979 980 981 982
            assert isinstance(
                batch_size, int
            ), "The type of batch_size should be int, " "but got {}.".format(
                type(batch_size)
            )
983 984 985 986 987 988 989 990 991 992

        self._auto_parallel_main_prog = auto_parallel_main_prog
        self._auto_parallel_startup_prog = auto_parallel_startup_prog
        self._rank_id = rank_id
        self._dist_context = dist_context
        self._dist_params_grads = dist_params_grads
        self._batch_size = batch_size
        self._has_sent = {}
        self._has_recv = {}
        self._has_allgather = {}
993 994
        # to avoid reshard repeatly
        self._has_resharded = {}
995

996 997 998
    @property
    def auto_parallel_main_prog(self):
        return self._auto_parallel_main_prog
999

1000 1001 1002
    @property
    def auto_parallel_startup_prog(self):
        return self._auto_parallel_startup_prog
1003

1004 1005 1006
    @property
    def rank_id(self):
        return self._rank_id
1007

1008 1009 1010
    @property
    def dist_context(self):
        return self._dist_context
1011

1012 1013 1014
    @property
    def dist_params_grads(self):
        return self._dist_params_grads
1015

1016 1017 1018
    @property
    def batch_size(self):
        return self._batch_size
1019

1020 1021 1022
    @property
    def has_sent(self):
        return self._has_sent
1023

1024 1025 1026
    @property
    def has_recv(self):
        return self._has_recv
1027

1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
    @property
    def has_allgather(self):
        return self._has_allgather

    @staticmethod
    def compute_partition_shape(complete_shape, dims_mapping, process_shape):
        """Compute the shape of partition."""
        partition_shape = []
        for idx, item in enumerate(complete_shape):
            if dims_mapping[idx] == -1:
                partition_shape.append(item)
            else:
                partition_shape.append(item // process_shape[dims_mapping[idx]])
1041

1042
        return partition_shape
1043

1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
    @staticmethod
    def compute_process_index(process, process_group, process_shape):
        """Compute the index of process_shape corresponding to the process."""
        relative_process = process_group.index(process)
        process_index = []
        product = reduce(lambda x, y: x * y, process_shape)

        for i in range(len(process_shape)):
            idx = relative_process // (product // process_shape[i])
            product = product // process_shape[i]
1054 1055 1056
            relative_process = (
                relative_process - relative_process // product * product
            )
1057 1058 1059 1060 1061
            process_index.append(idx)

        return process_index

    @staticmethod
1062 1063 1064
    def compute_partition_index(
        process, complete_shape, dims_mapping, process_shape, process_group
    ):
1065 1066
        """Compute the partition index in complete tensor."""
        partition_shape = Resharder.compute_partition_shape(
1067 1068 1069 1070 1071
            complete_shape, dims_mapping, process_shape
        )
        process_index = Resharder.compute_process_index(
            process, process_group, process_shape
        )
1072 1073 1074 1075 1076 1077
        partition_index = []

        for i in range(len(complete_shape)):
            if dims_mapping[i] == -1:
                partition_index.append([0, partition_shape[i]])
            else:
1078 1079 1080 1081 1082 1083 1084
                partition_index.append(
                    [
                        process_index[dims_mapping[i]] * partition_shape[i],
                        (process_index[dims_mapping[i]] + 1)
                        * partition_shape[i],
                    ]
                )
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098

        return partition_index

    @staticmethod
    def compute_concat_info(partition_index_x, partition_index_y):
        """Judge whether two partition can be concatenated and compute concatenated partition index."""
        differ_count = 0
        concat_axis = -1
        first_order = 0
        new_partition = []

        for idx, item in enumerate(partition_index_x):
            if item != partition_index_y[idx]:
                differ_count += 1
1099 1100 1101 1102
                if (
                    item[1] == partition_index_y[idx][0]
                    and item[0] < partition_index_y[idx][1]
                ):
1103 1104
                    concat_axis = idx
                    new_partition.append([item[0], partition_index_y[idx][1]])
1105 1106 1107 1108
                elif (
                    item[0] == partition_index_y[idx][1]
                    and item[1] > partition_index_y[idx][0]
                ):
1109 1110 1111 1112 1113
                    first_order = 1
                    concat_axis = idx
                    new_partition.append([partition_index_y[idx][0], item[1]])
            else:
                new_partition.append(item)
1114

1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
        if differ_count == 1:
            return concat_axis, first_order, new_partition
        else:
            return -1, first_order, new_partition

    @staticmethod
    def compute_complete_shape(slice_shape, process_shape, dims_mapping):
        """compute the complete shape of the slice tensor  with its process mesh and dims mapping"""
        complete_shape = []
        for idx, item in enumerate(slice_shape):
            if dims_mapping[idx] == -1:
                complete_shape.append(item)
            else:
                complete_shape.append(item * process_shape[dims_mapping[idx]])
        return complete_shape
C
caozhou 已提交
1130

1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
    @staticmethod
    def concat_partitions(partition_index_list, partition_index):
        """Concat the given partitions without inserting concat op."""
        if not partition_index_list:
            partition_index_list.append(partition_index)
        else:
            i = 0
            has_concat = False
            while i < len(partition_index_list):
                concat_axis, _, new_partition = Resharder.compute_concat_info(
1141 1142
                    partition_index_list[i], partition_index
                )
1143 1144 1145
                if concat_axis != -1:
                    has_concat = True
                    partition_index_list.pop(i)
1146 1147 1148
                    Resharder.concat_partitions(
                        partition_index_list, new_partition
                    )
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
                    break
                i += 1
            if not has_concat:
                partition_index_list.append(partition_index)

    @staticmethod
    def change_while_op_input_and_output(auto_parallel_main_prog, dist_context):
        """Change while op input and output after the corresponding sub block ops removed"""
        for sub_block_idx in Resharder.while_block_info:
            sub_block = auto_parallel_main_prog.blocks[sub_block_idx]
            parent_while_op_id = Resharder.while_block_info[sub_block_idx][
1160 1161
                "op_id"
            ]
1162 1163 1164 1165 1166 1167 1168
            parent_block = auto_parallel_main_prog.blocks[sub_block.parent_idx]

            sub_block_op_inputs = set()
            sub_block_op_outputs = []
            for op in sub_block.ops:
                # skip the input and output of operators inserted in the reshard phase
                dist_op = dist_context.get_dist_op_for_program(op)
1169 1170 1171 1172 1173 1174
                if (
                    dist_op
                    or (op.type == "slice" and not dist_op)
                    or (op.type == "split" and not dist_op)
                    or (op.type == "assign" and not dist_op)
                ):
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
                    for var_name in op.output_arg_names:
                        if var_name not in sub_block_op_outputs:
                            sub_block_op_outputs.append(var_name)
                    for var_name in op.input_arg_names:
                        sub_block_op_inputs.add(var_name)

            # find the while op
            while_op = None
            for op in parent_block.ops:
                if op.desc.id() == parent_while_op_id and op.type == "while":
                    while_op = op
                    break

1188 1189
            if while_op is None:
                continue
1190 1191 1192 1193 1194 1195 1196 1197

            # find the actual input and output of while op
            proto = OpProtoHolder.instance().get_op_proto(while_op.type)
            new_X = []
            for var_name in while_op.input("X"):
                if var_name in sub_block_op_inputs:
                    new_X.append(var_name)
            assert new_X
1198
            new_X.sort()
1199 1200 1201 1202 1203
            while_op.desc.set_input(proto.inputs[0].name, new_X)

            new_Out = []
            for var_name in while_op.output("Out"):
                for output_name in sub_block_op_outputs[::-1]:
1204
                    if output_name.find(var_name) != -1 and (
1205 1206 1207
                        len(var_name) == len(output_name)
                        or "@RESHARD" in output_name
                    ):
1208 1209
                        if output_name not in new_Out:
                            new_Out.append(output_name)
1210 1211 1212 1213 1214 1215
            assert new_Out
            while_op.desc.set_output(proto.outputs[0].name, new_Out)

    def is_overlapped(self, shape_x, shape_y):
        """Judge whether two partitions intersect on the specified dimension."""
        overlapped = False
1216 1217 1218
        if (shape_y[0] <= shape_x[0] < shape_y[1]) or (
            shape_x[0] <= shape_y[0] < shape_x[1]
        ):
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
            overlapped = True
        return overlapped

    def is_unshard(self, dims_mapping):
        for dim in dims_mapping:
            if dim != -1:
                return False
        return True

    def is_special_op(self, op):
1229
        global _g_special_ops, _g_gradient_clip_ops
Z
zhaoyingli 已提交
1230 1231
        if op.type in _g_special_ops:
            return True
1232
        if is_gradient_clip_op(op) and op.type in _g_gradient_clip_ops:
1233
            return True
Z
zhaoyingli 已提交
1234 1235
        return False

1236 1237
    def is_condition_replicative(self, op):
        sub_block = self.auto_parallel_main_prog.blocks[op.attr("sub_block").id]
1238 1239 1240 1241 1242

        if op.type == "while":
            input_cond = op.input("Condition")
        elif op.type == "conditional_block":
            input_cond = op.input("Cond")
1243 1244

        # the dims mapping of condition tensor should be replicative
1245
        for var_name in input_cond:
1246 1247 1248
            var = get_var_with_recursion(
                var_name, sub_block, self.auto_parallel_main_prog
            )
1249 1250 1251 1252 1253 1254
            dist_tensor = self.dist_context.get_dist_tensor_for_program(var)
            tensor_dist_attr = dist_tensor.dist_attr
            var_dims_mapping = tensor_dist_attr.dims_mapping
            for dim in var_dims_mapping:
                if dim != -1:
                    return False
1255

1256 1257
        return True

1258
    def need_reshard(self, dist_tensor, dist_attr, op_input=True, dist_op=None):
1259 1260 1261 1262 1263
        """Judge the tensor whether needs to be resharded."""
        is_reshard = False
        tensor_dist_attr = dist_tensor.dist_attr
        tensor_dims_mapping = tensor_dist_attr.dims_mapping
        tensor_process_mesh = tensor_dist_attr.process_mesh
1264 1265 1266 1267

        # dist_attr is [process_mesh, dims_mapping] and process_mesh is not a union
        op_process_mesh = dist_attr[0]

1268
        if op_input:
1269
            op_input_dims_mapping = dist_attr[1]
1270
            if all(
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
                map(
                    lambda x: x,
                    [
                        tensor_dims_mapping,
                        tensor_process_mesh,
                        op_input_dims_mapping,
                        op_process_mesh,
                    ],
                )
            ):
1281
                # judge whether need reshard by dims_mapping
1282
                if tensor_dims_mapping != op_input_dims_mapping:
1283 1284 1285 1286
                    if (
                        tensor_process_mesh
                        not in self.dist_context.process_meshes
                    ):
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
                        # assert whether -1 when union.
                        for item in tensor_dims_mapping:
                            if item != -1:
                                raise ValueError(
                                    "The dim must be -1 when tensor process mesh is a union."
                                )
                        # tensor process_mesh: [0, 1, 2, 3], dims_mapping: [-1, -1]
                        # op process_mesh: [4, 5], dims_mapping: [0, -1]
                        # reshard is not supported such as above
                        if not is_reshard:
                            return is_reshard
1298
                        else:
1299 1300 1301 1302 1303 1304 1305 1306
                            raise ValueError(
                                "it is not supported that tensor process mesh is a union and needs reshard."
                            )
                    is_reshard = True

                # judge whether need reshard by process_mesh
                if tensor_process_mesh != op_process_mesh:
                    is_reshard = True
1307
        else:
1308
            op_output_dims_mapping = dist_attr[1]
1309
            if all(
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
                map(
                    lambda x: x,
                    [
                        tensor_dims_mapping,
                        tensor_process_mesh,
                        op_output_dims_mapping,
                        op_process_mesh,
                    ],
                )
            ):
1320 1321 1322 1323
                if tensor_dims_mapping != op_output_dims_mapping:
                    raise ValueError(
                        "It is not supported that tensor dims mapping is different from op output dims mapping."
                    )
1324 1325
                if tensor_process_mesh != op_process_mesh:
                    is_reshard = True
1326 1327 1328 1329

        return is_reshard

    def get_op_process_meshes(self, op):
1330
        """Get sub process meshes of the given op if op process mesh is a union."""
1331 1332 1333
        process_meshes = []
        dist_op = self.dist_context.get_dist_op_for_program(op)
        op_process_mesh = dist_op.dist_attr.process_mesh
1334

1335
        for process_mesh in self.dist_context.process_meshes:
1336 1337 1338
            if set(process_mesh.processes) & (
                set(op_process_mesh.processes)
            ) and len(process_mesh.processes) < len(op_process_mesh.processes):
1339 1340 1341 1342 1343 1344 1345 1346
                process_meshes.append(process_mesh)

        # it means the process mesh is not a union when process meshes is null
        if not process_meshes:
            process_meshes.append(op_process_mesh)

        return process_meshes

1347
    def find_op_desc_seq(self, dist_tensor, dist_attr, serial=False):
1348 1349 1350 1351 1352
        """
        Find the op description sequence to reshard the source tensor for matching the op requirement.

        Args:
            dist_tensor (DistributedTensor): A distributed tensor.
1353 1354
            dist_attr (list): A list contains process_mesh and dims_mapping such as [process_mesh, dims_mapping].
            serial (bool): If serial is true, the dist tensor and dist op come from serial program. Otherwise, they come from auto program.
1355 1356 1357 1358 1359 1360 1361 1362

        Returns:
            Dict, the dict represents the required op description sequence corresponding to process, The key of dict is
            process and value is a list containing op description.
        """
        tensor_dist_attr = dist_tensor.dist_attr
        source_tensor = dist_tensor.serial_tensor
        tensor_name = source_tensor.name
1363

1364 1365 1366 1367 1368
        source_dims_mapping = tensor_dist_attr.dims_mapping
        source_process_mesh = tensor_dist_attr.process_mesh
        source_process_group = source_process_mesh.processes
        source_process_shape = source_process_mesh.topology

1369 1370
        target_process_mesh = dist_attr[0]
        target_dims_mapping = dist_attr[1]
1371 1372 1373
        target_process_group = target_process_mesh.processes
        target_process_shape = target_process_mesh.topology

1374 1375
        op_role = dist_attr[2]

1376
        if source_tensor.shape[0] < 0:
1377
            assert source_tensor.shape[0] == -1
1378 1379 1380 1381
            new_shape = list(source_tensor.shape)
            new_shape[0] = self.batch_size
            source_tensor.desc.set_shape(new_shape)

1382 1383 1384 1385 1386 1387 1388
        complete_shape = (
            Resharder.compute_complete_shape(
                source_tensor.shape, source_process_shape, source_dims_mapping
            )
            if not serial
            else source_tensor.shape
        )
1389 1390 1391
        op_desc_seq = {}

        # TODO: if the target process group has the same process with source process group
1392 1393 1394
        if set(target_process_group).intersection(
            set(source_process_group)
        ) and set(target_process_group).difference(set(source_process_group)):
1395 1396 1397 1398 1399
            pass

        elif target_process_group != source_process_group:
            partition_process_mapping_list = []
            for source_process in source_process_group:
1400
                # get partition index of source process
1401 1402 1403 1404 1405 1406 1407
                source_partition_index = Resharder.compute_partition_index(
                    source_process,
                    complete_shape,
                    source_dims_mapping,
                    source_process_shape,
                    source_process_group,
                )
1408
                if not partition_process_mapping_list:
1409
                    # the item in partition_process_mapping_list is source_partition_index, which processes and whether has been used
1410
                    partition_process_mapping_list.append(
1411 1412
                        [source_partition_index, [source_process], [False]]
                    )
1413
                else:
1414
                    partition_list = list(
1415 1416
                        [item[0] for item in partition_process_mapping_list]
                    )
1417
                    process_list = list(
1418 1419
                        [item[1] for item in partition_process_mapping_list]
                    )
1420
                    has_used = list(
1421 1422
                        [item[2] for item in partition_process_mapping_list]
                    )
1423

1424 1425 1426 1427 1428
                    if partition_list.count(source_partition_index) == 1:
                        index = partition_list.index(source_partition_index)
                        process_list[index].append(source_process)
                        has_used[index].append(False)
                    else:
1429
                        partition_process_mapping_list.append(
1430 1431
                            [source_partition_index, [source_process], [False]]
                        )
1432 1433

            for target_process in target_process_group:
1434
                # has_sent means the source_partition_index has been sent to target_process
1435 1436
                has_sent = []
                target_partition_index = Resharder.compute_partition_index(
1437 1438 1439 1440 1441 1442
                    target_process,
                    complete_shape,
                    target_dims_mapping,
                    target_process_shape,
                    target_process_group,
                )
1443 1444 1445 1446
                partition_index_list = []
                all_partition_index_list = []
                for source_process in source_process_group:
                    source_partition_index = Resharder.compute_partition_index(
1447 1448 1449 1450 1451 1452
                        source_process,
                        complete_shape,
                        source_dims_mapping,
                        source_process_shape,
                        source_process_group,
                    )
1453
                    to_send_process = None
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
                    if (
                        all(
                            _
                            for _ in list(
                                map(
                                    self.is_overlapped,
                                    source_partition_index,
                                    target_partition_index,
                                )
                            )
                        )
                        and source_partition_index not in has_sent
                    ):
                        idx = list(
                            [item[0] for item in partition_process_mapping_list]
                        ).index(source_partition_index)
                        has_used = list(
                            [item[2] for item in partition_process_mapping_list]
                        )[idx]
                        process_list = list(
                            [item[1] for item in partition_process_mapping_list]
                        )[idx]
1476 1477 1478 1479 1480 1481 1482
                        i = 0
                        while i < len(has_used):
                            if not has_used[i]:
                                to_send_process = process_list[i]
                                has_used[i] = True
                                break
                            i += 1
1483

1484 1485 1486 1487
                        if i == len(has_used):
                            has_used = list(map(lambda x: False, has_used))
                            to_send_process = process_list[0]
                            has_used[0] = True
1488 1489 1490
                        assert (
                            to_send_process is not None
                        ), "Failed to find the send process."
1491 1492 1493 1494 1495 1496 1497 1498

                        if to_send_process not in op_desc_seq.keys():
                            op_desc_seq[to_send_process] = []
                        if target_process not in op_desc_seq.keys():
                            op_desc_seq[target_process] = []
                        all_partition_index_list.append(source_partition_index)

                        # append send and recv op desc
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
                        is_bool = dist_tensor.serial_tensor.dtype == paddle.bool
                        send_op_desc = SendOpDesc(
                            source_partition_index,
                            to_send_process,
                            target_process,
                            is_bool=is_bool,
                        )
                        recv_op_desc = RecvOpDesc(
                            source_partition_index,
                            to_send_process,
                            target_process,
                            is_bool=is_bool,
                        )
1512 1513 1514
                        op_desc_seq[to_send_process].append(send_op_desc)
                        op_desc_seq[target_process].append(recv_op_desc)
                        has_sent.append(source_partition_index)
1515 1516 1517 1518 1519 1520 1521
                        Resharder.concat_partitions(
                            partition_index_list, source_partition_index
                        )
                        if int(op_role) == int(OpRole.Forward):
                            self.dist_context.up_down_streams.add_pair_stream(
                                to_send_process, target_process
                            )
1522 1523 1524

                # append concat op desc
                op_desc_seq[target_process].append(
1525 1526
                    ConcatOpDesc(all_partition_index_list)
                )
1527 1528 1529 1530 1531 1532

                # append slice op desc
                slice_starts = []
                slice_ends = []
                slices_axes = []
                concatenated_partition_index = partition_index_list[0]
1533 1534
                to_slice_tensor_shape = []

1535
                for idx, item in enumerate(concatenated_partition_index):
1536 1537 1538
                    slice_starts.append(
                        target_partition_index[idx][0] - item[0]
                    )
1539 1540
                    slice_ends.append(target_partition_index[idx][1] - item[0])
                    slices_axes.append(idx)
1541 1542
                    to_slice_tensor_shape.append(item[1] - item[0])

1543
                op_desc_seq[target_process].append(
1544 1545 1546 1547 1548 1549 1550
                    SliceOpDesc(
                        slice_starts,
                        slice_ends,
                        slices_axes,
                        shape=to_slice_tensor_shape,
                    )
                )
1551

1552
        # in the same process group, it will use allgahther and slice op.
1553
        else:
1554
            # NOTE: It just supports even partition scene.
1555 1556 1557 1558 1559
            partition_index_list = []
            all_partition_index_list = []
            process_index = []
            for source_process in source_process_group:
                source_partition_index = Resharder.compute_partition_index(
1560 1561 1562 1563 1564 1565
                    source_process,
                    complete_shape,
                    source_dims_mapping,
                    source_process_shape,
                    source_process_group,
                )
1566 1567
                if source_partition_index not in partition_index_list:
                    partition_index_list.append(source_partition_index)
1568 1569 1570 1571 1572 1573 1574 1575
                    process_index.append(
                        [
                            [
                                source_process,
                            ],
                            source_partition_index,
                        ]
                    )
1576
                else:
1577 1578 1579
                    process_index[
                        partition_index_list.index(source_partition_index)
                    ][0].append(source_process)
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592

            for i in range(len(process_index[0][0])):
                group = []
                for j in range(len(process_index)):
                    group.append(process_index[j][0][i])
                    if i == 0:
                        all_partition_index_list.append(process_index[j][1])
                for process in group:
                    # append slice op desc
                    slice_starts = []
                    slice_ends = []
                    slices_axes = []
                    target_partition_index = Resharder.compute_partition_index(
1593 1594 1595 1596 1597 1598
                        process,
                        complete_shape,
                        target_dims_mapping,
                        target_process_shape,
                        target_process_group,
                    )
1599 1600 1601 1602 1603
                    for idx, item in enumerate(target_partition_index):
                        slice_starts.append(item[0])
                        slice_ends.append(item[1])
                        slices_axes.append(idx)

1604
                    to_slice_tensor_shape = dist_tensor.global_sizes()
1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
                    slice_op_desc = SliceOpDesc(
                        starts=slice_starts,
                        ends=slice_ends,
                        axes=slices_axes,
                        shape=to_slice_tensor_shape,
                    )
                    allgather_shape = (
                        None
                        if not serial
                        else dist_tensor.local_sizes(rank=process)
                    )
                    op_desc_seq[process] = (
                        [
                            AllGatherOpDesc(
                                group=group,
                                shape=allgather_shape,
                                is_bool=(source_tensor.dtype == paddle.bool),
                            ),
                            ConcatOpDesc(
                                partition_index_list=all_partition_index_list
                            ),
                            slice_op_desc,
                        ]
                        if len(group) > 1
                        else [slice_op_desc]
                    )
1631 1632 1633

        return op_desc_seq

1634 1635 1636
    def parse_op_desc(
        self, block, op_desc_seq, var_name, reshard_op, dist_attr
    ):
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
        """Parse op desc sequence and insert op in the block"""
        tensor_list = []
        partition_tensor_list = []
        if self.rank_id not in op_desc_seq.keys():
            return
        op_desc_list = op_desc_seq[self.rank_id]

        idx = None
        for index, op in list(enumerate(block.ops)):
            if op.desc.id == reshard_op.desc.id:
                idx = index
                break
1649 1650 1651 1652 1653
        assert (
            idx is not None
        ), "The op for reshard cannot be found in the rank {} program.".format(
            self.rank_id
        )
1654 1655

        matched_op = block.ops[idx]
1656 1657 1658
        source_tensor = get_var_with_recursion(
            var_name, block, self.auto_parallel_main_prog
        )
1659 1660 1661 1662
        for op_desc in op_desc_list:
            if isinstance(op_desc, AllGatherOpDesc):  # noqa: F401
                if var_name not in self.has_allgather.keys():
                    self.has_allgather[var_name] = []
1663 1664 1665 1666 1667
                if not self.has_allgather[
                    var_name
                ] or op_desc.group not in list(
                    map(lambda x: x[0], self.has_allgather[var_name])
                ):
1668 1669 1670
                    if op_desc.is_bool:
                        # for bool data allgather, cast to int64 -> allgather -> cast bool
                        out_cast = Inserter.insert_cast_op(
1671 1672 1673 1674 1675 1676
                            block,
                            idx,
                            source_tensor,
                            reshard_op.attr('op_role'),
                            paddle.int64,
                        )
1677
                        tensor_list, idx_offset = Inserter.insert_allgather_op(
1678 1679 1680 1681 1682 1683
                            block,
                            idx + 1,
                            out_cast,
                            op_desc.group,
                            reshard_op.attr('op_role'),
                        )
1684 1685 1686 1687
                        idx += idx_offset
                        tensor_name_list = []
                        for var in tensor_list:
                            out_cast = Inserter.insert_cast_op(
1688 1689 1690 1691 1692 1693
                                block,
                                idx,
                                var,
                                reshard_op.attr('op_role'),
                                paddle.bool,
                            )
1694 1695 1696
                            tensor_name_list.append(out_cast.name)
                            idx += 1
                        self.has_allgather[var_name].append(
1697 1698
                            [op_desc.group, tensor_name_list]
                        )
1699 1700
                    else:
                        tensor_list, idx_offset = Inserter.insert_allgather_op(
1701 1702 1703 1704 1705 1706
                            block,
                            idx,
                            source_tensor,
                            op_desc.group,
                            reshard_op.attr('op_role'),
                        )
1707 1708 1709
                        idx += idx_offset
                        tensor_name_list = [var.name for var in tensor_list]
                        self.has_allgather[var_name].append(
1710 1711
                            [op_desc.group, tensor_name_list]
                        )
1712 1713 1714 1715
                else:
                    for item in self.has_allgather[var_name]:
                        if op_desc.group == item[0]:
                            tensor_list = [
C
caozhou 已提交
1716
                                get_var_with_recursion(
1717 1718 1719 1720
                                    var_name,
                                    block,
                                    self.auto_parallel_main_prog,
                                )
1721 1722 1723
                                for var_name in item[1]
                            ]
                            break
1724 1725 1726
                assert (
                    tensor_list
                ), "The result of parsing allgather op should not be None."
1727 1728 1729 1730 1731

            elif isinstance(op_desc, SendOpDesc):
                if var_name not in self.has_sent.keys():
                    self.has_sent[var_name] = []
                if op_desc.dst not in self.has_sent[var_name]:
1732 1733
                    if op_desc.is_bool:
                        out_cast = Inserter.insert_cast_op(
1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747
                            block,
                            idx,
                            source_tensor,
                            reshard_op.attr('op_role'),
                            paddle.int64,
                        )
                        Inserter.insert_send_op(
                            block,
                            idx + 1,
                            out_cast,
                            op_desc.src,
                            op_desc.dst,
                            reshard_op.attr('op_role'),
                        )
1748 1749
                        idx += 2
                    else:
1750 1751 1752 1753 1754 1755 1756 1757
                        Inserter.insert_send_op(
                            block,
                            idx,
                            source_tensor,
                            op_desc.src,
                            op_desc.dst,
                            reshard_op.attr('op_role'),
                        )
1758
                        idx += 1
1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
                    self.has_sent[var_name].append(op_desc.dst)

            elif isinstance(op_desc, RecvOpDesc):
                if var_name not in self.has_recv.keys():
                    self.has_recv[var_name] = {}
                if op_desc.src not in self.has_recv[var_name].keys():
                    partition_index = op_desc.partition_index
                    shape = []
                    for index in partition_index:
                        shape.append(index[1] - index[0])
1769 1770 1771 1772 1773 1774 1775
                    if op_desc.is_bool:
                        # for bool data, recv int64 -> cast to bool
                        recv_tensor = block.create_var(
                            name=unique_name.generate(var_name + "@recv"),
                            shape=shape,
                            lod_level=source_tensor.lod_level,
                            dtype=paddle.int64,
1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
                            type=source_tensor.type,
                        )
                        Inserter.insert_recv_op(
                            block,
                            idx,
                            recv_tensor,
                            op_desc.src,
                            op_desc.dst,
                            reshard_op.attr('op_role'),
                        )
1786
                        out_cast = Inserter.insert_cast_op(
1787 1788 1789 1790 1791 1792
                            block,
                            idx + 1,
                            recv_tensor,
                            reshard_op.attr('op_role'),
                            paddle.bool,
                        )
1793 1794 1795 1796 1797 1798 1799 1800 1801
                        tensor_list.append(out_cast)
                        idx += 2
                        self.has_recv[var_name][op_desc.src] = out_cast
                    else:
                        recv_tensor = block.create_var(
                            name=unique_name.generate(var_name + "@recv"),
                            shape=shape,
                            lod_level=source_tensor.lod_level,
                            dtype=source_tensor.dtype,
1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
                            type=source_tensor.type,
                        )
                        Inserter.insert_recv_op(
                            block,
                            idx,
                            recv_tensor,
                            op_desc.src,
                            op_desc.dst,
                            reshard_op.attr('op_role'),
                        )
1812 1813 1814 1815 1816

                        # for lod tensor, need reset lod after received
                        if recv_tensor.lod_level != 0:
                            set_lod = False
                            # use data lod to reset tensor lod
1817 1818 1819
                            for (
                                tmp_block
                            ) in self.auto_parallel_main_prog.blocks:
1820 1821
                                for tmp_var_name in tmp_block.vars:
                                    tmp_var = tmp_block.vars[tmp_var_name]
1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835
                                    if (
                                        tmp_var.is_data
                                        and tmp_var.lod_level
                                        == recv_tensor.lod_level
                                    ):
                                        reset_lod_out = (
                                            Inserter.insert_reset_lod_op(
                                                block,
                                                idx + 1,
                                                recv_tensor,
                                                tmp_var,
                                                reshard_op.attr('op_role'),
                                            )
                                        )
1836 1837 1838
                                        tensor_list.append(reset_lod_out)
                                        idx += 2
                                        self.has_recv[var_name][
1839 1840
                                            op_desc.src
                                        ] = reset_lod_out
1841 1842 1843 1844 1845 1846 1847 1848 1849
                                        set_lod = True
                                        break
                                if set_lod:
                                    break
                            assert set_lod is True
                        else:
                            tensor_list.append(recv_tensor)
                            idx += 1
                            self.has_recv[var_name][op_desc.src] = recv_tensor
1850 1851 1852 1853 1854 1855 1856 1857
                else:
                    tensor_list.append(self.has_recv[var_name][op_desc.src])

            elif isinstance(op_desc, ConcatOpDesc):
                partition_index_list = op_desc.partition_index_list
                idx_list = [idx]
                for index, tensor in enumerate(tensor_list):
                    Inserter.concat_partitions_with_op(
1858 1859 1860 1861 1862 1863 1864
                        partition_tensor_list,
                        tensor,
                        partition_index_list[index],
                        block,
                        idx_list,
                        reshard_op.attr('op_role'),
                    )
1865 1866 1867
                idx = idx_list[0]

            elif isinstance(op_desc, SliceOpDesc):
1868 1869 1870 1871 1872 1873 1874 1875
                assert (
                    len(partition_tensor_list) == 1 or not partition_tensor_list
                )
                to_slice_tensor = (
                    partition_tensor_list[0][0]
                    if len(partition_tensor_list) == 1
                    else source_tensor
                )
1876 1877 1878 1879 1880 1881 1882 1883 1884
                new_name = unique_name.generate(var_name + "@RESHARD")
                target_tensor = Inserter.insert_slice_op(
                    block,
                    idx,
                    to_slice_tensor,
                    starts=op_desc.starts,
                    ends=op_desc.ends,
                    axes=op_desc.axes,
                    new_var_name=new_name,
1885 1886
                    op_role=reshard_op.attr('op_role'),
                )
1887

1888 1889 1890
                process_mesh = dist_attr[0]
                dims_mapping = dist_attr[1]

1891 1892 1893 1894
                tensor_attr = TensorDistributedAttribute()
                tensor_attr.dims_mapping = dims_mapping
                tensor_attr.process_mesh = process_mesh
                self.dist_context.set_tensor_dist_attr_for_program(
1895 1896
                    target_tensor, tensor_attr
                )
1897

1898
                if matched_op.type == "while":
1899
                    # var_reshard_mapping means the while op input need be changed to
1900 1901 1902 1903 1904 1905
                    if (
                        "var_reshard_mapping"
                        not in Resharder.while_block_info[
                            op.attr("sub_block").id
                        ].keys()
                    ):
1906
                        Resharder.while_block_info[op.attr("sub_block").id][
1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
                            "var_reshard_mapping"
                        ] = {}
                    if (
                        var_name
                        not in Resharder.while_block_info[
                            op.attr("sub_block").id
                        ]["var_reshard_mapping"].keys()
                    ):
                        Resharder.while_block_info[op.attr("sub_block").id][
                            "var_reshard_mapping"
                        ][var_name] = []
1918
                    Resharder.while_block_info[op.attr("sub_block").id][
1919 1920
                        "var_reshard_mapping"
                    ][var_name].append([dist_attr, target_tensor.name])
1921 1922 1923

                # rename op input name according to new name
                for op in block.ops:
1924 1925
                    # just for while op
                    while_op_X_append = []
1926
                    for name in op.input_arg_names:
1927 1928 1929
                        op_dist_attr = (
                            self.dist_context.get_op_dist_attr_for_program(op)
                        )
1930 1931
                        if name == var_name and op_dist_attr is not None:
                            if op.desc.id() == matched_op.desc.id():
1932 1933 1934 1935
                                if matched_op.type == "while":
                                    old_name = name
                                    new_name = target_tensor.name
                                    assert old_name != new_name
1936 1937 1938 1939 1940
                                    op_input_dist_attr = (
                                        op_dist_attr.get_input_dist_attr(
                                            old_name
                                        )
                                    )
1941
                                    op_dist_attr.set_input_dist_attr(
1942 1943
                                        new_name, op_input_dist_attr
                                    )
1944
                                    op_dist_attr.set_input_dims_mapping(
1945 1946 1947 1948 1949 1950
                                        new_name, dims_mapping
                                    )
                                    if (
                                        old_name
                                        in op_dist_attr._inputs_dist_attrs
                                    ):
1951
                                        op_dist_attr.del_input_dist_attr(
1952 1953
                                            old_name
                                        )
1954 1955 1956 1957
                                    while_op_X_append.append(new_name)
                                    continue
                                else:
                                    op.desc._rename_input(
1958 1959
                                        name, target_tensor.name
                                    )
1960 1961 1962
                                    old_name = name
                                    new_name = target_tensor.name
                                    assert old_name != new_name
1963 1964 1965 1966 1967
                                    op_input_dist_attr = (
                                        op_dist_attr.get_input_dist_attr(
                                            old_name
                                        )
                                    )
1968
                                    op_dist_attr.set_input_dist_attr(
1969 1970
                                        new_name, op_input_dist_attr
                                    )
1971
                                    op_dist_attr.set_input_dims_mapping(
1972 1973
                                        new_name, dims_mapping
                                    )
1974 1975
                                    op_dist_attr.del_input_dist_attr(old_name)
                                    continue
1976 1977

                            op_process_mesh = op_dist_attr.process_mesh
1978 1979 1980
                            op_input_dims_mapping = (
                                op_dist_attr.get_input_dims_mapping(var_name)
                            )
1981
                            # NOTE: For op whose process mesh is a union, its input will not be renamed by other op reshard result now which means that it will have more reshard operation.
1982 1983 1984 1985
                            if (
                                op_process_mesh == process_mesh
                                and op_input_dims_mapping == dims_mapping
                            ):
1986
                                op.desc._rename_input(name, target_tensor.name)
1987 1988 1989
                                old_name = name
                                new_name = target_tensor.name
                                assert old_name != new_name
1990 1991 1992
                                op_input_dist_attr = (
                                    op_dist_attr.get_input_dist_attr(old_name)
                                )
1993
                                op_dist_attr.set_input_dist_attr(
1994 1995
                                    new_name, op_input_dist_attr
                                )
1996
                                op_dist_attr.set_input_dims_mapping(
1997 1998
                                    new_name, dims_mapping
                                )
1999
                                op_dist_attr.del_input_dist_attr(old_name)
2000

2001 2002 2003
                    # for while op, the input X should reset
                    if while_op_X_append:
                        proto = OpProtoHolder.instance().get_op_proto(op.type)
2004 2005 2006 2007
                        op.desc.set_input(
                            proto.inputs[0].name,
                            op.input("X") + while_op_X_append,
                        )
2008

2009
    def _get_subblock_input_attrs(self, op, var_name):
2010
        # NOTE: Multi while loop is not supported
2011
        assert op.type in _g_subblock_ops
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
        sub_block = self.auto_parallel_main_prog.blocks[op.attr("sub_block").id]
        ops = sub_block.ops
        input_attrs = []

        for op in ops:
            dist_op = self.dist_context.get_dist_op_for_program(op)
            if not dist_op:
                continue
            dist_attr = dist_op.dist_attr
            for name in op.input_arg_names:
                if name == var_name:
                    process_mesh = dist_attr.process_mesh
                    input_dims_mapping = dist_attr.get_input_dims_mapping(
2025 2026
                        var_name
                    )
2027 2028
                    has_exist = False
                    for input_attr in input_attrs:
2029 2030 2031 2032
                        if (
                            process_mesh == input_attr[0]
                            and input_dims_mapping == input_attr[1]
                        ):
2033 2034 2035
                            has_exist = True
                            break
                    if not has_exist:
2036 2037 2038 2039 2040 2041 2042
                        input_attrs.append(
                            [
                                process_mesh,
                                input_dims_mapping,
                                op.attr('op_role'),
                            ]
                        )
2043 2044
        return input_attrs

2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
    def _get_subblock_output_attrs(self, op, var_name):
        assert op.type in _g_subblock_ops
        sub_block = self.auto_parallel_main_prog.blocks[op.attr("sub_block").id]
        ops = sub_block.ops
        output_attrs = []

        for op in ops:
            dist_op = self.dist_context.get_dist_op_for_program(op)
            if not dist_op:
                continue
            dist_attr = dist_op.dist_attr
            for name in op.output_arg_names:
                if name == var_name:
                    process_mesh = dist_attr.process_mesh
                    output_dims_mapping = dist_attr.get_output_dims_mapping(
                        var_name
                    )
                    has_exist = False
                    for output_attr in output_attrs:
                        if (
                            process_mesh == output_attr[0]
                            and output_dims_mapping == output_attr[1]
                        ):
                            has_exist = True
                            break
                    if not has_exist:
                        output_attrs.append(
                            [
                                process_mesh,
                                output_dims_mapping,
                                op.attr('op_role'),
                            ]
                        )
        return output_attrs

2080 2081 2082 2083 2084 2085
    def _get_common_op_input_attrs(self, op, var_name):
        process_meshes = []
        dist_op = self.dist_context.get_dist_op_for_program(op)
        dist_attr = dist_op.dist_attr
        op_process_mesh = dist_attr.process_mesh
        for process_mesh in self.dist_context.process_meshes:
2086 2087 2088
            if set(process_mesh.processes) & (
                set(op_process_mesh.processes)
            ) and len(process_mesh.processes) < len(op_process_mesh.processes):
2089 2090 2091 2092 2093 2094 2095 2096 2097
                process_meshes.append(process_mesh)

        # it means that the process mesh is not a union when process meshes is none
        if not process_meshes:
            process_meshes.append(op_process_mesh)

        input_dims_mapping = dist_attr.get_input_dims_mapping(var_name)
        input_attrs = []
        for process_mesh in process_meshes:
2098 2099 2100
            input_attrs.append(
                [process_mesh, input_dims_mapping, op.attr('op_role')]
            )
2101 2102 2103 2104 2105

        return input_attrs

    def get_op_input_attrs(self, op, var_name):
        op_input_attrs = []
2106

2107 2108
        if op.type in _g_subblock_ops:
            op_input_attrs = self._get_subblock_input_attrs(op, var_name)
2109 2110
            if not op_input_attrs:
                op_input_attrs = self._get_subblock_output_attrs(op, var_name)
2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122
        else:
            op_input_attrs = self._get_common_op_input_attrs(op, var_name)

        assert op_input_attrs

        return op_input_attrs

    def _remove_global_process_mesh(self):
        """Remove global process mesh from dist_context.process_meshes"""
        processes = set()
        process_mesh_count = len(self.dist_context.process_meshes)
        if process_mesh_count > 1:
2123 2124
            global_process_mesh_idx = []
            has_sub_process_mesh = False
2125 2126 2127 2128
            for process_mesh in self.dist_context.process_meshes:
                for process in process_mesh.processes:
                    processes.add(process)
            for idx, process_mesh in enumerate(
2129 2130
                self.dist_context.process_meshes
            ):
2131
                if len(set(process_mesh.processes)) == len(processes):
2132 2133 2134
                    global_process_mesh_idx.append(idx)
                elif set(process_mesh.processes) < processes:
                    has_sub_process_mesh = True
2135

2136 2137
            if has_sub_process_mesh:
                for idx in reversed(global_process_mesh_idx):
2138
                    self.dist_context.process_meshes.pop(idx)
2139 2140 2141 2142

    def _change_subblock_op_input_and_output(self, block_idx, block):
        if "var_reshard_mapping" in Resharder.while_block_info[block_idx]:
            var_reshard_mapping = Resharder.while_block_info[block_idx][
2143 2144
                "var_reshard_mapping"
            ]
2145 2146 2147 2148 2149 2150 2151 2152
            for op in block.ops:
                for var_name in op.input_arg_names:
                    if var_name in var_reshard_mapping:
                        # in while sub block, the union process mesh is not split before reshard sub block
                        dist_op = self.dist_context.get_dist_op_for_program(op)
                        dist_attr = dist_op.dist_attr
                        target_name = None
                        for item in var_reshard_mapping[var_name]:
2153 2154 2155 2156 2157
                            if (
                                dist_attr.process_mesh == item[0][0]
                                and dist_attr.get_input_dims_mapping(var_name)
                                == item[0][1]
                            ):
2158 2159 2160 2161 2162 2163 2164
                                target_name = item[1]
                                break
                        if target_name is None:
                            continue
                        else:
                            op.desc._rename_input(var_name, target_name)
                            dist_op = self.dist_context.get_dist_op_for_program(
2165 2166
                                op
                            )
2167 2168 2169 2170
                            op_dist_attr = dist_op.dist_attr
                            old_name = var_name
                            new_name = target_name
                            assert old_name != new_name
2171 2172 2173
                            op_input_dist_attr = (
                                op_dist_attr.get_input_dist_attr(old_name)
                            )
2174
                            op_dist_attr.set_input_dist_attr(
2175 2176
                                new_name, op_input_dist_attr
                            )
2177 2178 2179 2180 2181 2182 2183
                            op_dist_attr.del_input_dist_attr(old_name)

                # the outputs also need to be renamed when the output name is the same with input name in inplace op
                for var_name in op.output_arg_names:
                    # if the tensor has been resharded multiply, it is not supported now.
                    if var_name in var_reshard_mapping:
                        if len(var_reshard_mapping[var_name]) > 1:
2184
                            raise ValueError(
2185
                                "The scene is not supported that the output is inplaced and the tensor has been resharded multiply when as input."
2186
                            )
2187 2188 2189 2190 2191 2192 2193 2194 2195
                        target_name = var_reshard_mapping[var_name][0][1]

                        op.desc._rename_output(var_name, target_name)
                        dist_op = self.dist_context.get_dist_op_for_program(op)
                        op_dist_attr = dist_op.dist_attr
                        old_name = var_name
                        new_name = target_name
                        assert old_name != new_name
                        op_output_dist_attr = op_dist_attr.get_output_dist_attr(
2196 2197
                            old_name
                        )
2198
                        op_dist_attr.set_output_dist_attr(
2199 2200
                            new_name, op_output_dist_attr
                        )
2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214
                        op_dist_attr.del_output_dist_attr(old_name)

    def _reshard_input(self, block):
        idx = 0
        while idx < len(block.ops):
            pre_op_count = len(block.ops)
            op = block.ops[idx]

            if self.is_special_op(op):
                idx += 1
                continue

            dist_op = self.dist_context.get_dist_op_for_program(op)
            if dist_op is not None:
2215 2216 2217
                op_input_dist_attrs = (
                    []
                )  # [(op_process_mesh, op_input_dims_mapping), (op_process_mesh, op_input_dims_mapping)]
2218
                if op.type in _g_subblock_ops:
2219 2220 2221 2222
                    if not self.is_condition_replicative(op):
                        raise ValueError(
                            "Please check the condition due to the dims mapping is not replicative."
                        )
2223 2224 2225 2226
                    if (
                        op.attr("sub_block").id
                        not in Resharder.while_block_info
                    ):
2227
                        Resharder.while_block_info[op.attr("sub_block").id] = {}
2228 2229 2230
                    Resharder.while_block_info[op.attr("sub_block").id][
                        "op_id"
                    ] = op.desc.id()
2231 2232 2233 2234

                if op.type == "while":
                    # condition var process mesh is the same with op and dims_mapping is replicative, so it do not need reshard
                    input_var_names = op.input("X")
2235 2236
                elif op.type == "conditional_block":
                    input_var_names = op.input("Input")
2237
                else:
2238 2239 2240 2241 2242 2243
                    input_var_names = op.input_arg_names
                # to avoid while op X order different
                input_var_names.sort()

                idx_offset = 0
                for var_name in input_var_names:
2244 2245
                    # skip lod_tensor_blocking_queue_? name
                    if "lod_tensor_blocking_queue" in var_name:
2246
                        continue
2247 2248 2249
                    var = get_var_with_recursion(
                        var_name, block, self.auto_parallel_main_prog
                    )
2250
                    dist_tensor = self.dist_context.get_dist_tensor_for_program(
2251 2252
                        var
                    )
2253 2254 2255

                    # judge whether union tensor dims_mapping all -1
                    is_union_process_mesh_tensor = False
2256 2257 2258 2259 2260
                    if (
                        dist_tensor.dist_attr.process_mesh
                        not in self.dist_context.process_meshes
                        and self.dist_context.process_meshes
                    ):
2261 2262
                        is_union_process_mesh_tensor = True
                        assert dist_tensor.dist_attr.dims_mapping.count(
2263 2264
                            -1
                        ) == len(dist_tensor.dist_attr.dims_mapping)
2265 2266 2267 2268 2269 2270 2271 2272 2273

                    op_input_attrs = self.get_op_input_attrs(op, var_name)
                    for input_attr in op_input_attrs:
                        input_process_mesh = None

                        # deal with union tensor
                        if is_union_process_mesh_tensor:
                            # if op process mesh is subset of union tensor process mesh, need no reshard
                            if set(input_attr[0].processes) <= set(
2274
                                dist_tensor.dist_attr.process_mesh.processes
2275 2276
                            ):
                                continue
2277 2278

                        if dist_tensor is not None and self.need_reshard(
2279 2280
                            dist_tensor, input_attr
                        ):
2281
                            reshard_op_desc = self.find_op_desc_seq(
2282 2283 2284 2285 2286
                                dist_tensor, input_attr
                            )
                            self.parse_op_desc(
                                block, reshard_op_desc, var_name, op, input_attr
                            )
2287
                            cur_op_count = len(block.ops)
2288 2289 2290
                            idx_offset = (
                                idx_offset + cur_op_count - pre_op_count
                            )
2291
                            pre_op_count = cur_op_count
2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304
                idx = idx + idx_offset + 1
            else:
                idx += 1

    def _hadnle_recv(self, block, idx, var, op, send_rank, recv_rank):
        if self.rank_id == recv_rank:
            # if recv bool data, recv then cast
            if var.dtype == paddle.bool:
                recv_cast_out = block.create_var(
                    name=unique_name.generate(var.name + "@recv"),
                    shape=var.shape,
                    lod_level=var.lod_level,
                    dtype=paddle.int64,
2305 2306 2307 2308 2309 2310 2311 2312 2313 2314
                    type=var.type,
                )
                Inserter.insert_recv_op(
                    block,
                    idx + 1,
                    recv_cast_out,
                    send_rank,
                    recv_rank,
                    op.attr('op_role'),
                )
2315 2316 2317 2318 2319 2320
                reset_lod_out = None
                if var.lod_level != 0:
                    set_lod = False
                    for tmp_block in self.auto_parallel_main_prog.blocks:
                        for tmp_var_name in tmp_block.vars:
                            tmp_var = tmp_block.vars[tmp_var_name]
2321 2322 2323 2324
                            if (
                                tmp_var.is_data
                                and tmp_var.lod_level == var.lod_level
                            ):
2325
                                reset_lod_out = block.create_var(
2326 2327 2328
                                    name=unique_name.generate(
                                        var.name + "@RESETLOD"
                                    ),
2329 2330 2331
                                    shape=recv_cast_out.shape,
                                    type=recv_cast_out.type,
                                    dtype=recv_cast_out.dtype,
2332 2333
                                    lod_level=recv_cast_out.lod_level,
                                )
2334 2335 2336 2337
                                idx += 1
                                block._insert_op(
                                    idx,
                                    type="lod_reset",
2338
                                    inputs={'X': recv_cast_out, 'Y': tmp_var},
2339
                                    outputs={'Out': reset_lod_out},
2340 2341
                                    attrs={'op_role': op.attr("op_role")},
                                )
2342 2343 2344 2345 2346 2347 2348
                                set_lod = True
                                break
                        if set_lod:
                            break
                    assert set_lod is True

                # cast int64 to bool
2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364
                cast_op = block._insert_op(
                    idx + 2,
                    type='cast',
                    inputs={
                        'X': [recv_cast_out]
                        if reset_lod_out is None
                        else [reset_lod_out]
                    },
                    outputs={'Out': [var]},
                    attrs={
                        'in_dtype': recv_cast_out.dtype,
                        'out_dtype': var.dtype,
                        'op_role': op.attr('op_role'),
                    },
                )
                cast_op._set_attr('op_namescope', "/auto_parallel/reshard")
2365 2366 2367 2368 2369 2370 2371
            else:
                if var.lod_level != 0:
                    recv_out = block.create_var(
                        name=unique_name.generate(var.name + "@recv"),
                        shape=var.shape,
                        lod_level=var.lod_level,
                        dtype=var.int64,
2372 2373 2374 2375 2376 2377 2378 2379 2380 2381
                        type=var.type,
                    )
                    Inserter.insert_recv_op(
                        block,
                        idx + 1,
                        recv_out,
                        send_rank,
                        recv_rank,
                        op.attr('op_role'),
                    )
2382 2383 2384 2385
                    set_lod = False
                    for tmp_block in self.auto_parallel_main_prog.blocks:
                        for tmp_var_name in tmp_block.vars:
                            tmp_var = tmp_block.vars[tmp_var_name]
2386 2387 2388 2389
                            if (
                                tmp_var.is_data
                                and tmp_var.lod_level == var.lod_level
                            ):
2390 2391 2392 2393
                                idx += 1
                                block._insert_op(
                                    idx,
                                    type="lod_reset",
2394
                                    inputs={'X': recv_out, 'Y': tmp_var},
2395
                                    outputs={'Out': var},
2396 2397
                                    attrs={'op_role': op.attr("op_role")},
                                )
2398 2399 2400 2401 2402
                                set_lod = True
                                break
                        if set_lod:
                            break
                    assert set_lod is True
2403
                else:
2404 2405 2406 2407 2408 2409 2410 2411
                    Inserter.insert_recv_op(
                        block,
                        idx + 1,
                        var,
                        send_rank,
                        recv_rank,
                        op.attr('op_role'),
                    )
2412 2413 2414

    def _handle_send(self, block, idx, var, op, send_rank, recv_rank):
        if var.dtype == paddle.bool:
2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425
            cast_out = Inserter.insert_cast_op(
                block, idx + 1, var, op.attr('op_role'), paddle.int64
            )
            Inserter.insert_send_op(
                block,
                idx + 2,
                cast_out,
                send_rank,
                recv_rank,
                op.attr('op_role'),
            )
2426
        else:
2427 2428 2429
            Inserter.insert_send_op(
                block, idx + 1, var, send_rank, recv_rank, op.attr('op_role')
            )
2430 2431 2432 2433 2434 2435

    def _reshard_output(self, block):
        # insert send and recv op if output process mesh is different from tensor process mesh
        idx = 0
        # skip reader and ops whose process mesh is union
        skip_ops = [
2436 2437 2438 2439 2440
            "create_py_reader",
            "create_double_buffer_reader",
            "read",
            "write_to_array",
            "read_from_array",
2441 2442 2443
        ]
        global _g_special_ops
        skip_ops += _g_special_ops
2444
        skip_ops += _g_subblock_ops
2445 2446 2447 2448 2449 2450 2451
        while idx < len(block.ops):
            pre_op_count = len(block.ops)
            op = block.ops[idx]
            dist_op = self.dist_context.get_dist_op_for_program(op)
            if dist_op is not None and op.type not in skip_ops:
                idx_offset = 0
                for var_name in op.output_arg_names:
2452 2453 2454
                    var = get_var_with_recursion(
                        var_name, block, self.auto_parallel_main_prog
                    )
2455
                    dist_tensor = self.dist_context.get_dist_tensor_for_program(
2456 2457
                        var
                    )
2458 2459 2460
                    tensor_process_mesh = dist_tensor.dist_attr.process_mesh
                    output_attr = [
                        dist_op.dist_attr.process_mesh,
2461
                        dist_op.dist_attr.get_output_dims_mapping(var_name),
2462 2463
                    ]
                    if dist_tensor is not None and self.need_reshard(
2464 2465
                        dist_tensor, output_attr, False
                    ):
2466
                        tensor_processes = set(
2467 2468 2469 2470 2471
                            tensor_process_mesh.processes
                        ) - (
                            set(tensor_process_mesh.processes)
                            & set(output_attr[0].processes)
                        )
2472 2473
                        if tensor_processes:
                            if len(tensor_processes) != len(
2474 2475
                                output_attr[0].processes
                            ):
2476
                                if dist_tensor.dist_attr.dims_mapping.count(
2477 2478 2479 2480 2481 2482 2483 2484 2485 2486
                                    -1
                                ) != len(
                                    dist_tensor.dist_attr.dims_mapping
                                ) or output_attr[
                                    1
                                ].count(
                                    -1
                                ) != len(
                                    output_attr[1]
                                ):
2487
                                    raise ValueError(
2488 2489
                                        "The dims_mapping must be -1"
                                    )
2490 2491
                                else:
                                    for index, tensor_process in enumerate(
2492 2493
                                        tensor_processes
                                    ):
2494 2495 2496
                                        recv_rank = tensor_process
                                        actual_index = index
                                        if index >= len(
2497 2498
                                            output_attr[0].processes
                                        ):
2499
                                            actual_index = (
2500 2501
                                                index
                                                - len(output_attr[0].processes)
2502 2503
                                            ) % len(output_attr[0].processes)
                                        item = output_attr[0].processes[
2504 2505
                                            actual_index
                                        ]
2506 2507
                                        if recv_rank == item:
                                            continue
2508 2509 2510 2511
                                        if var.shape[0] == -1:
                                            new_shape = list(var.shape)
                                            new_shape[0] = self.batch_size
                                            var.desc.set_shape(new_shape)
2512 2513 2514
                                        if self.rank_id == item:
                                            # if send bool data, cast then send
                                            self._handle_send(
2515 2516 2517 2518 2519 2520 2521
                                                block,
                                                idx,
                                                var,
                                                op,
                                                item,
                                                recv_rank,
                                            )
2522 2523 2524
                                        if self.rank_id == recv_rank:
                                            # if recv bool data, recv then cast
                                            self._hadnle_recv(
2525 2526 2527 2528 2529 2530 2531
                                                block,
                                                idx,
                                                var,
                                                op,
                                                item,
                                                recv_rank,
                                            )
2532 2533
                            else:
                                for index, tensor_process in enumerate(
2534 2535
                                    tensor_processes
                                ):
2536 2537 2538 2539
                                    recv_rank = tensor_process
                                    item = output_attr[0].processes[index]
                                    if recv_rank == item:
                                        continue
2540 2541 2542 2543
                                    if var.shape[0] == -1:
                                        new_shape = list(var.shape)
                                        new_shape[0] = self.batch_size
                                        var.desc.set_shape(new_shape)
2544 2545 2546
                                    if self.rank_id == item:
                                        # if send bool data, cast then send
                                        self._handle_send(
2547 2548
                                            block, idx, var, op, item, recv_rank
                                        )
2549 2550 2551
                                    if self.rank_id == recv_rank:
                                        # if recv bool data, recv then cast
                                        self._hadnle_recv(
2552 2553
                                            block, idx, var, op, item, recv_rank
                                        )
2554 2555

                            cur_op_count = len(block.ops)
2556 2557 2558
                            idx_offset = (
                                idx_offset + cur_op_count - pre_op_count
                            )
2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577
                            pre_op_count = cur_op_count

                idx = idx + idx_offset + 1
            else:
                idx += 1

    def reshard(self):
        self._remove_global_process_mesh()
        for block_idx, block in enumerate(self.auto_parallel_main_prog.blocks):
            # change the var_name before resharding sub block
            if block_idx in Resharder.while_block_info:
                self._change_subblock_op_input_and_output(block_idx, block)

            # reshard input
            self._reshard_input(block)

            # reshard output
            # NOTE: Only support that insert send and recv op if output process mesh is different from tensor process mesh
            self._reshard_output(block)
2578 2579

        # remove no need vars and ops in the main program
2580 2581 2582 2583 2584 2585
        Remover.remove_no_need_in_main(
            self.auto_parallel_main_prog,
            self.dist_context,
            self.rank_id,
            self.dist_params_grads,
        )
2586

2587
        # remove no need vars and ops in the startip program
2588 2589 2590
        Remover.remove_no_need_in_startup(
            self.auto_parallel_main_prog, self.auto_parallel_startup_prog
        )
C
caozhou 已提交
2591

2592 2593
        # reset some variable when remove operation ended
        Resharder.while_block_info = {}
2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607

    def get_cost(self, op, tensor, cluster):
        # NOTE: The program should be the serial_program which is not been parted
        global _g_special_ops
        not_supported_op_type = _g_special_ops + ["while"]
        reshard_op_cost = None
        if op.type in not_supported_op_type:
            return reshard_op_cost
        else:
            tensor_name = tensor.name
            if tensor_name == "lod_tensor_blocking_queue_0":
                return reshard_op_cost
            else:
                dist_tensor = self.dist_context.get_dist_tensor_for_program(
2608 2609
                    tensor
                )
2610 2611 2612
                # simplified processing: ignore union process mesh and output reshard
                dist_op = self.dist_context.get_dist_op_for_program(op)
                dims_mapping = dist_op.dist_attr.get_input_dims_mapping(
2613 2614
                    tensor.name
                )
2615
                process_mesh = dist_op.dist_attr.process_mesh
2616 2617 2618 2619 2620
                dist_attr = [
                    process_mesh,
                    dims_mapping,
                    dist_op.serial_op.attr('op_role'),
                ]
2621
                if dist_tensor is not None and self.need_reshard(
2622 2623
                    dist_tensor, dist_attr
                ):
2624 2625 2626 2627 2628
                    if tensor_name not in self._has_resharded:
                        self._has_resharded[tensor_name] = [dist_op]
                    else:
                        for item in self._has_resharded[tensor_name]:
                            item_dist_attr = item.dist_attr
2629 2630 2631 2632 2633
                            item_dims_mapping = (
                                item_dist_attr.get_input_dims_mapping(
                                    tensor_name
                                )
                            )
2634
                            item_process_mesh = item_dist_attr.process_mesh
2635 2636 2637 2638
                            if (
                                dims_mapping == item_dims_mapping
                                and item_process_mesh == process_mesh
                            ):
2639 2640 2641
                                return reshard_op_cost
                        self._has_resharded[tensor_name].append(dist_op)

2642 2643 2644
                    reshard_op_desc = self.find_op_desc_seq(
                        dist_tensor, dist_attr, serial=True
                    )
2645 2646
                    dtype = dist_tensor.serial_tensor.dtype
                    reshard_op_cost = self.parse_op_desc_for_cost(
2647 2648
                        reshard_op_desc, dtype, cluster
                    )
2649 2650 2651

        return reshard_op_cost

2652 2653 2654 2655 2656 2657 2658 2659 2660
    def _concat_partitions_for_cost(
        self,
        partition_tensor_list,
        partition_index,
        dtype,
        rank_id,
        local_rank_comp_cost,
        cluster,
    ):
2661 2662 2663 2664 2665 2666
        if not partition_tensor_list:
            partition_tensor_list.append(partition_index)
        else:
            i = 0
            has_concat = False
            while i < len(partition_tensor_list):
2667 2668 2669 2670 2671 2672 2673
                (
                    concat_axis,
                    first_order,
                    new_partition,
                ) = Resharder.compute_concat_info(
                    partition_tensor_list[i], partition_index
                )
2674 2675 2676 2677 2678 2679 2680
                if concat_axis != -1:
                    has_concat = True
                    concat_desc = {}
                    concat_desc["op"] = "concat"
                    concat_desc["attrs"] = {"axis": concat_axis}
                    if first_order == 0:
                        concat_desc["inputs"] = {
2681 2682 2683 2684
                            "X": [
                                (dtype, partition_tensor_list[i]),
                                (dtype, partition_index),
                            ]
2685 2686 2687
                        }
                    else:
                        concat_desc["inputs"] = {
2688 2689 2690 2691
                            "X": [
                                (dtype, partition_index),
                                (dtype, partition_tensor_list[i]),
                            ]
2692 2693 2694 2695 2696
                        }
                    partition_tensor_list.pop(i)
                    if rank_id not in local_rank_comp_cost:
                        local_rank_comp_cost[rank_id] = []
                    local_rank_comp_cost[rank_id].append(
2697 2698 2699 2700 2701 2702 2703 2704 2705 2706
                        ConcatOpCost(op_desc=concat_desc, cluster=cluster)
                    )
                    self._concat_partitions_for_cost(
                        partition_tensor_list,
                        new_partition,
                        dtype,
                        rank_id,
                        local_rank_comp_cost,
                        cluster,
                    )
2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742
                    break
                i += 1
            if not has_concat:
                partition_tensor_list.append(partition_index)

    def parse_op_desc_for_cost(self, reshard_op_desc, dtype, cluster):
        def _get_idx(comm_ranks, group_ranks):
            res, is_the_same = None, False
            idx = 0
            while idx < len(comm_ranks):
                if comm_ranks[idx] == set(group_ranks):
                    is_the_same = True

                for rank in group_ranks:
                    if rank in comm_ranks[idx]:
                        res = idx
                        comm_ranks[idx].add(rank)
                if res is None:
                    idx += 1
                else:
                    break
            return res, is_the_same

        comm_context = CommContext(cluster)
        # run communication op before computation op
        # TODO: Communication cost is not calculated when the var has been transfered by the same group in the past
        comm_costs = []
        comm_ranks = []
        local_rank_comp_cost = {}
        for key in reshard_op_desc:
            partition_tensor_list = []
            op_desc_list = reshard_op_desc[key]
            for op_desc in op_desc_list:
                if isinstance(op_desc, SendOpDesc):
                    group_ranks = [key, op_desc.dst]
                    shape = op_desc.shape
2743 2744 2745
                    send_desc = build_comm_desc(
                        "send_v2", group_ranks, dtype, shape
                    )
2746 2747
                    idx, is_the_same = _get_idx(comm_ranks, group_ranks)
                    if idx is None:
2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758
                        comm_costs.append(
                            [
                                (
                                    group_ranks,
                                    SendOpCost(
                                        op_desc=send_desc,
                                        comm_context=comm_context,
                                    ),
                                )
                            ]
                        )
2759 2760 2761 2762
                        comm_ranks.append(set(group_ranks))
                    else:
                        if not is_the_same:
                            comm_costs[idx].append(
2763 2764 2765 2766 2767 2768 2769 2770
                                (
                                    group_ranks,
                                    SendOpCost(
                                        op_desc=send_desc,
                                        comm_context=comm_context,
                                    ),
                                )
                            )
2771 2772 2773 2774
                elif isinstance(op_desc, AllGatherOpDesc):
                    # NOTE: fill_const and other unnecessary op is not calculated because those cost is very small
                    group_ranks = op_desc.group
                    shape = op_desc.shape
2775 2776 2777
                    allgather_desc = build_comm_desc(
                        "c_allgather", group_ranks, dtype, shape
                    )
2778 2779 2780 2781 2782 2783 2784 2785
                    split_inputs_shape = []
                    for idx, dim in enumerate(shape):
                        if idx == 0:
                            split_inputs_shape.append(dim * len(group_ranks))
                        else:
                            split_inputs_shape.append(dim)
                    idx, is_the_same = _get_idx(comm_ranks, group_ranks)
                    if idx is None:
2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796
                        comm_costs.append(
                            [
                                (
                                    group_ranks,
                                    AllgatherOpCost(
                                        op_desc=allgather_desc,
                                        comm_context=comm_context,
                                    ),
                                )
                            ]
                        )
2797 2798 2799 2800
                        comm_ranks.append(set(group_ranks))
                    else:
                        if not is_the_same:
                            comm_costs[idx].append(
2801 2802 2803 2804 2805 2806 2807 2808
                                (
                                    group_ranks,
                                    AllgatherOpCost(
                                        op_desc=allgather_desc,
                                        comm_context=comm_context,
                                    ),
                                )
                            )
2809 2810 2811 2812 2813 2814 2815 2816 2817 2818
                    # calc the split op cost
                    if key not in local_rank_comp_cost:
                        local_rank_comp_cost[key] = []
                    split_desc = {}
                    split_desc["op"] = "split"
                    split_desc["inputs"] = {
                        "inputs": [(dtype, split_inputs_shape)]
                    }
                    split_desc["attrs"] = {"num": len(group_ranks), "axis": 0}
                    local_rank_comp_cost[key].append(
2819 2820
                        SplitOpCost(op_desc=split_desc, cluster=cluster)
                    )
2821 2822 2823 2824
                elif isinstance(op_desc, ConcatOpDesc):
                    partition_index_list = op_desc._partition_index_list
                    for idx, partion_idex in enumerate(partition_index_list):
                        self._concat_partitions_for_cost(
2825 2826 2827 2828 2829 2830 2831
                            partition_tensor_list,
                            partion_idex,
                            dtype,
                            key,
                            local_rank_comp_cost,
                            cluster,
                        )
2832 2833 2834 2835

                elif isinstance(op_desc, SliceOpDesc):
                    if key not in local_rank_comp_cost:
                        local_rank_comp_cost[key] = []
2836 2837 2838 2839
                    assert (
                        len(partition_tensor_list) == 1
                        or not partition_tensor_list
                    )
2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852
                    to_slice_tensor_shape = []
                    if len(partition_tensor_list) == 1:
                        for item in partition_tensor_list[0]:
                            to_slice_tensor_shape.append(item[1] - item[0])
                    else:
                        to_slice_tensor_shape = op_desc.shape
                    slice_desc = {}
                    slice_desc["op"] = "slice"
                    infer_flags = list(1 for i in range(len(op_desc.axes)))
                    slice_desc["attrs"] = {
                        "axes": op_desc.axes,
                        "starts": op_desc.starts,
                        "ends": op_desc.ends,
2853
                        "infer_flags": infer_flags,
2854 2855 2856 2857 2858
                    }
                    slice_desc["inputs"] = {
                        "Input": [(dtype, to_slice_tensor_shape)]
                    }
                    local_rank_comp_cost[key].append(
2859 2860
                        SliceOpCost(op_desc=slice_desc, cluster=cluster)
                    )
2861 2862 2863 2864

        res = (comm_costs, local_rank_comp_cost)

        return res