parallelizer.py 21.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16 17 18 19 20 21
import os
import sys
import json
import shlex
import copy
import pathlib
import subprocess
Z
zhaoyingli 已提交
22
import logging
23 24
import pickle
import time
25
import paddle
26
import paddle.fluid.core as core
27
from paddle.fluid import program_guard
28 29
from paddle.fluid.backward import append_backward
from paddle.distributed.utils.log_utils import get_logger
J
JZ-LIANG 已提交
30
from paddle.distributed.passes import new_pass, PassContext
31
from .dist_context import DistributedContext
32
from .dist_context import set_default_distributed_context
33
from .completion import Completer
34
from .partitioner import Partitioner
35
from .process_group import get_all_process_groups
36
from .process_group import get_process_group
J
JZ-LIANG 已提交
37
from .process_group import get_world_process_group
38
from .process_group import _g_process_group_map, ProcessGroup
39
from .utils import make_data_unshard
Z
zhaoyingli 已提交
40
from .utils import set_grad_var_shape
41
from .utils import SerialProgramInfo
42
from .reshard import Resharder
43 44
from .cluster import Cluster
from .mapper import mapping
45 46 47
from .dist_op import DistributedOperator
from .dist_tensor import DistributedTensor
from .planner import Planner
Z
zhaoyingli 已提交
48 49

_logger = get_logger(logging.INFO)
50 51 52 53 54 55 56


class AutoParallelizer:
    """
    AutoParallelizer is the main controller class to do the auto parallel process.
    And the auto parallel process will be triggered in the wrapped parallelize function.
    To facilitate the auto parallelization, it will contain information about program, cluster and the
57
    related context. In this basic version, the program information will be retrevied from
58
    Fleet object, and the cluster information can be retrevied in the new created Cluster object,
59
    and the context information can be retrevied in the new created DistributedContext.
60 61 62 63 64 65
    """

    def __init__(self, fleet):
        self._fleet = fleet
        self._optimizer = self._fleet.user_defined_optimizer
        self._dist_strategy = self._fleet._user_defined_strategy
66
        self._dist_context = DistributedContext()
67 68 69 70 71 72 73 74 75 76 77 78
        self._cluster = None
        self._cluster_topo_path = os.getenv("PADDLE_CLUSTER_TOPO_PATH", None)
        if self._cluster_topo_path is not None:
            self._cluster = Cluster()
            self._cluster.build_from_file(self._cluster_topo_path)
        # Prepare information for auto mapping
        self._rank_mapping_path = os.getenv("PADDLE_RANK_MAPPING_PATH", None)
        enable_auto_mapping_env = os.getenv("PADDLE_ENABLE_AUTO_MAPPING", None)
        if enable_auto_mapping_env is None:
            self._enable_auto_mapping = False
        else:
            self._enable_auto_mapping = True
79 80
        self._pass_context = PassContext()

81
        self._need_rank_mapping = os.getenv("PADDLE_NEED_RANK_MAPPING")
82 83 84 85 86 87
        self._need_rank_mapping = (
            True
            if self._need_rank_mapping
            and self._need_rank_mapping.lower() == 'true'
            else False
        )
88
        # self._pass_context = None
89

90 91 92 93 94 95 96 97 98 99
    def _remove_distributed_attrs(self, main_program):
        suffix = core.kAutoParallelSuffix()
        # distributed attributes for variable have been removed
        # in previous process.
        for block in main_program.blocks:
            for op in block.ops:
                for attr_name in op.attr_names:
                    if suffix in attr_name:
                        op._remove_attr(attr_name)

100 101 102
    def _apply_pre_optimization_passes(
        self, main_program, startup_program, loss, params_grads, no_grad_set
    ):
J
JZ-LIANG 已提交
103
        # apply amp pass
104
        if self._dist_strategy.amp:
J
JZ-LIANG 已提交
105 106 107 108
            config = copy.deepcopy(self._dist_strategy.amp_configs)
            config["dist_context"] = self._dist_context
            config["params_grads"] = params_grads
            config["loss"] = loss
109 110 111
            if config["use_pure_fp16"]:
                config["base_opt"] = self._optimizer
                auto_parallel_fp16_pass = new_pass("auto_parallel_fp16", config)
112 113 114
                auto_parallel_fp16_pass.apply(
                    [main_program], [startup_program], self._pass_context
                )
115 116
            else:
                auto_parallel_amp_pass = new_pass("auto_parallel_amp", config)
117 118 119
                auto_parallel_amp_pass.apply(
                    [main_program], [startup_program], self._pass_context
                )
120

J
JZ-LIANG 已提交
121
        # apply recompute pass
122
        if self._dist_strategy.recompute:
123 124 125 126
            config = copy.deepcopy(self._dist_strategy.recompute_configs)
            config["dist_context"] = self._dist_context
            config["no_grad_set"] = copy.deepcopy(no_grad_set)
            config["loss"] = loss
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
            auto_parallel_recompute_pass = new_pass(
                "auto_parallel_recompute", config
            )
            auto_parallel_recompute_pass.apply(
                [main_program], [startup_program], self._pass_context
            )

    def _generate_backward(
        self,
        main_program,
        startup_program,
        loss,
        parameter_list,
        no_grad_set,
        callbacks,
    ):
143

J
JZ-LIANG 已提交
144 145 146 147 148 149
        with program_guard(main_program, startup_program):
            params_grads = append_backward(
                loss,
                parameter_list,
                no_grad_set,
                callbacks,
150 151
                distop_context=self._dist_context.dist_op_context,
            )
152 153
        self._completer = Completer(self._dist_context)
        self._completer.complete_backward_annotation(main_program)
154
        self._dist_context.block_state.parse_backward_blocks(main_program)
155 156 157 158
        return params_grads

    def _apply_optimize(self, main_program, startup_program, params_grads):

159
        optimizer = copy.deepcopy(self._optimizer)
J
JZ-LIANG 已提交
160
        with program_guard(main_program, startup_program):
161
            optimize_ops = optimizer.apply_gradients(params_grads)
162

163
        self._dist_context._serial_optimizer = optimizer
164
        # update completion
165 166
        self._completer = Completer(self._dist_context)
        self._completer.complete_update_annotation(main_program)
167 168 169

        return optimize_ops

170 171 172
    def _apply_post_optimization_passes(
        self, main_program, startup_program, rank, params_grads
    ):
J
JZ-LIANG 已提交
173 174 175 176 177 178

        if self._dist_strategy.sharding:
            config = copy.deepcopy(self._dist_strategy.sharding_configs)
            config["dist_context"] = self._dist_context
            config["params_grads"] = params_grads
            config["global_rank"] = rank
179 180 181 182 183 184
            auto_parallel_sharding_pass = new_pass(
                "auto_parallel_sharding", config
            )
            auto_parallel_sharding_pass.apply(
                [main_program], [startup_program], self._pass_context
            )
185 186 187 188 189 190 191
            params_grads = self._pass_context.get_attr("params_grads")

        config = copy.deepcopy(self._dist_strategy.sharding_configs)
        config["dist_context"] = self._dist_context
        config["params_grads"] = params_grads
        config["rank_id"] = rank
        auto_parallel_clip_pass = new_pass("auto_parallel_grad_clip", config)
192 193 194
        auto_parallel_clip_pass.apply(
            [main_program], [startup_program], self._pass_context
        )
J
JZ-LIANG 已提交
195

196 197 198 199 200
        if self._dist_strategy.gradient_merge:
            config = copy.deepcopy(self._dist_strategy.gradient_merge_configs)
            config["dist_context"] = self._dist_context
            config["params_grads"] = params_grads
            auto_parallel_gradient_merge_pass = new_pass(
201 202 203 204 205
                "auto_parallel_gradient_merge_pass", config
            )
            auto_parallel_gradient_merge_pass.apply(
                [main_program], [startup_program], self._pass_context
            )
206

207 208
    def _get_dist_program(self, rank, dist_context=None, relaunch_phase=False):
        completed_main_program = None
209 210 211
        serial_main_program = self._main_program.clone()
        serial_startup_program = self._startup_program.clone()
        serial_loss = serial_main_program.global_block().var(self._loss.name)
212

213
        # generating serial
214 215 216 217
        if dist_context is None:
            # Annotation completion
            self._dist_context = DistributedContext()
            _logger.info("Start annotation dist attr.")
218
            self._completer = Completer(self._dist_context)
219 220 221
            completed_main_program = (
                self._completer.complete_forward_annotation(serial_main_program)
            )
222
        else:
223
            completed_main_program = serial_main_program
224 225
            self._dist_context = copy.deepcopy(dist_context)

226 227 228
        # parse forward sub block
        self._dist_context.block_state.parse_forward_blocks(serial_main_program)

229 230
        # serial backward pass
        params_grads = self._generate_backward(
231 232 233 234 235 236 237
            completed_main_program,
            serial_startup_program,
            serial_loss,
            self._parameter_list,
            self._no_grad_set,
            self._callbacks,
        )
238

J
JZ-LIANG 已提交
239
        # serial forward pass
240 241 242 243 244 245 246
        self._apply_pre_optimization_passes(
            completed_main_program,
            serial_startup_program,
            serial_loss,
            params_grads,
            self._no_grad_set,
        )
247
        # Logical partition
248
        partitioner = Partitioner(self._dist_context, rank)
249 250 251 252 253 254 255
        (
            dist_main_prog,
            dist_startup_prog,
            dist_params_grads,
        ) = partitioner.partition(
            completed_main_program, serial_startup_program, params_grads
        )
256 257 258

        # TODO refactor the placement of optimizer
        # generate optimize program
259 260 261
        dist_optimize_ops = self._apply_optimize(
            dist_main_prog, dist_startup_prog, dist_params_grads
        )
262

263
        set_grad_var_shape(dist_main_prog, self._dist_context)
264

265
        make_data_unshard(dist_main_prog, dist_startup_prog, self._dist_context)
266

267 268 269 270 271 272 273
        resharder = Resharder(
            dist_main_prog,
            dist_startup_prog,
            rank,
            self._dist_context,
            dist_params_grads,
        )
274
        resharder.reshard()
275

276 277 278
        self._apply_post_optimization_passes(
            dist_main_prog, dist_startup_prog, rank, dist_params_grads
        )
279 280 281 282
        g_process_group_map = None
        if not relaunch_phase:
            g_process_group_map = copy.deepcopy(_g_process_group_map)
            _g_process_group_map.clear()
283
            _g_process_group_map[0] = ProcessGroup(1000, [])
284
            for process_mesh in self._dist_context._process_meshes:
Z
zhaoyingli 已提交
285
                _g_process_group_map[0].add_ranks(process_mesh.processes)
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
        return (
            dist_optimize_ops,
            dist_params_grads,
            dist_startup_prog,
            dist_main_prog,
            g_process_group_map,
        )

    def parallelize(
        self,
        loss,
        startup_program,
        parameter_list=None,
        no_grad_set=None,
        callbacks=None,
    ):
302
        assert startup_program is not None
303 304 305 306 307
        self._loss = loss
        self._startup_program = startup_program
        self._main_program = loss.block.program
        self._parameter_list = parameter_list
        self._no_grad_set = no_grad_set
308
        self._callbacks = callbacks
309 310 311

        if self._enable_auto_mapping and self._need_rank_mapping:
            # Do the mapping pass before parallelization
312 313 314
            assert (
                self._cluster is not None
            ), "The cluster must not be none when using auto mapping."
315
            dist_programs = {}
J
JZ-LIANG 已提交
316
            world_process_group = get_world_process_group()
317 318 319 320
            dist_context = None
            # auto search
            if self._dist_strategy.auto_search:
                logging.info("Start searching dist attr.")
321 322 323 324 325 326 327 328 329 330 331 332
                serial_program_info = SerialProgramInfo(
                    self._main_program,
                    self._startup_program,
                    self._loss,
                    self._optimizer,
                    self._cluster,
                )
                planner = Planner(
                    serial_program_info,
                    self,
                    algorithm_config={"name": "mcmc", "max_search_times": 5},
                )
333 334 335 336 337 338 339 340
                dist_context, _ = planner.search()
                logging.info("End searching dist attr.")

            # serialize the dist context by planner
            if dist_context is not None:
                logging.info("Start serialize searched dist attr")
                cwd = pathlib.Path().resolve()
                searched_dist_context_path = os.path.join(
341 342
                    cwd, f"searched_dist_context_{time.time()}.pkl"
                )
343 344 345 346 347
                saved_dist_context = {}
                ops_dist_attr = {}
                tensors_dist_attr = {}
                for key, dist_op in dist_context._dist_ops_for_program.items():
                    ops_dist_attr[key] = dist_op.dist_attr
348 349 350 351
                for (
                    key,
                    dist_tensor,
                ) in dist_context._dist_tensors_for_program.items():
352 353 354 355
                    tensors_dist_attr[key] = dist_tensor.dist_attr
                saved_dist_context["ops_dist_attr"] = ops_dist_attr
                saved_dist_context["tensors_dist_attr"] = tensors_dist_attr
                saved_dist_context[
356 357 358 359 360
                    "process_meshes"
                ] = dist_context._process_meshes
                with open(
                    searched_dist_context_path, "wb"
                ) as dist_context_file:
361 362
                    pickle.dump(saved_dist_context, dist_context_file)
                    os.environ[
363 364
                        'PADDLE_SEARCHED_DIST_CONTEXT_PATH'
                    ] = searched_dist_context_path
365 366 367 368
                    logging.info(
                        f"End serialize searched dist attr to {searched_dist_context_path}"
                    )

369
            for rank in world_process_group.ranks:
370 371 372 373 374 375 376
                (
                    dist_optimize_ops,
                    dist_params_grads,
                    dist_startup_prog,
                    dist_main_prog,
                    g_process_group_map,
                ) = self._get_dist_program(rank, dist_context)
377
                dist_programs[rank] = [dist_main_prog, g_process_group_map]
378 379 380 381

            # Do the mapping between the distributed program graph and the cluster graph
            rank_mapping_dict = mapping(dist_programs, self._cluster)
            rank_mapping = list(rank_mapping_dict.values())
382

383 384 385 386 387
            # Relaunch the training by using the rank mapping file
            with open(self._rank_mapping_path, "w") as rank_mapping_file:
                json.dump(rank_mapping, rank_mapping_file)

            enable_elastic = os.getenv("PADDLE_ENABLE_ELASTIC")
388 389 390 391 392
            enable_elastic = (
                True
                if enable_elastic and enable_elastic.lower() == 'true'
                else False
            )
393 394
            if enable_elastic:
                print("Auto mapping finished, now do elastic re-launch")
395 396 397
                sys.exit(
                    paddle.distributed.fleet.elastic.manager.ELASTIC_AUTO_PARALLEL_EXIT_CODE
                )
398 399 400

            original_cmd_args = os.getenv("PADDLE_ORIGINAL_CMD_ARGS")
            rank_mapping_args = " ".join(
401 402
                ["--rank_mapping_path", self._rank_mapping_path]
            )
403 404 405 406
            if os.environ.get("WITH_COVERAGE", "OFF") == "ON":
                coverage_args = ["-m", "coverage", "run", "--branch", "-p"]
            else:
                coverage_args = []
407 408 409 410 411 412 413 414 415 416 417 418
            new_cmd_args = (
                "-m paddle.distributed.fleet.launch"
                + " "
                + rank_mapping_args
                + " "
                + original_cmd_args
            )
            new_cmd = (
                [sys.executable, "-u"]
                + coverage_args
                + shlex.split(new_cmd_args)
            )
419 420
            new_process = subprocess.Popen(new_cmd)
            new_process.wait()
421 422 423
            assert (
                new_process.returncode == 0
            ), "Launch failed with rank mapping"
424 425 426 427 428
            print("Successfully do the second launch for auto mapping!")
            sys.exit(0)
        else:
            # Parallelization after the mapping pass
            rank = paddle.distributed.get_rank()
429 430
            dist_context = None
            searched_dist_context_path = os.getenv(
431 432
                "PADDLE_SEARCHED_DIST_CONTEXT_PATH", None
            )
433
            if searched_dist_context_path is not None:
434 435 436
                with open(
                    searched_dist_context_path, "rb"
                ) as dist_context_file:
437 438 439 440
                    saved_dist_context = pickle.load(dist_context_file)
                    dist_context = DistributedContext()
                    for op in self._main_program.global_block().ops:
                        dist_attr = saved_dist_context["ops_dist_attr"][
441 442
                            op.desc.id()
                        ]
443 444 445 446 447 448
                        dist_op = DistributedOperator(op, dist_attr)
                        dist_context.add_dist_op_for_program(dist_op)

                    vars = self._main_program.global_block().vars
                    for var in vars.values():
                        dist_attr = saved_dist_context["tensors_dist_attr"][
449 450
                            var.desc.id()
                        ]
451 452 453 454
                        dist_tensor = DistributedTensor(var, dist_attr)
                        dist_context.add_dist_tensor_for_program(dist_tensor)

                    dist_context._process_meshes = saved_dist_context[
455 456
                        "process_meshes"
                    ]
457 458 459 460 461 462 463 464

            else:
                if self._dist_strategy.auto_search:
                    serial_program_info = SerialProgramInfo(
                        self._main_program,
                        self._startup_program,
                        self._loss,
                        self._optimizer,
465 466 467 468 469 470 471 472 473 474
                        cluster=self._cluster,
                    )
                    planner = Planner(
                        serial_program_info,
                        self,
                        algorithm_config={
                            "name": "mcmc",
                            "max_search_times": 5,
                        },
                    )
475 476 477 478 479 480 481
                    dist_context, _ = planner.search()

            # rebuild g_process_group
            if dist_context is not None:
                pg0 = get_process_group(0)
                for process_mesh in dist_context._process_meshes:
                    pg0.add_ranks(process_mesh.processes)
482 483 484 485 486 487 488
            (
                dist_optimize_ops,
                dist_params_grads,
                dist_startup_prog,
                dist_main_prog,
                _,
            ) = self._get_dist_program(rank, dist_context, relaunch_phase=True)
489

490 491 492 493 494 495 496 497 498
            # NOTE: This is a trick to fix hang in pipeline mode when dist context is searched by planner
            if self._dist_strategy.auto_search:
                is_pipeline = False
                for op in dist_main_prog.global_block().ops:
                    if op.type == "send_v2" or op.type == "recv_v2":
                        is_pipeline = True
                        break
                if is_pipeline:
                    with paddle.static.program_guard(dist_main_prog):
499
                        paddle.distributed.barrier(get_process_group(0))
500

501 502 503 504
            # Traverse different rank programs and traverse each op of them,
            # instantiate communication by process_mapping.
            all_process_groups = get_all_process_groups()
            for process_group in all_process_groups:
505 506 507 508 509 510 511
                if len(_g_process_group_map) > 0:
                    tmp = paddle.to_tensor([1], dtype="int32")
                    paddle.distributed.all_reduce(
                        tmp, sync_op=True, group=_g_process_group_map[0]
                    )
                    paddle.device.cuda.synchronize()

512 513 514
                if rank not in process_group.ranks:
                    continue
                process_group.instantiate()
C
caozhou 已提交
515

516 517
            # Copy distributed info to the default context
            set_default_distributed_context(self._dist_context)
Z
zhaoyingli 已提交
518

519 520 521
            # The last step: remove all distributed attributes to be compatible
            # with inference.
            self._remove_distributed_attrs(dist_main_prog)
522

523 524 525 526 527 528
            return (
                dist_optimize_ops,
                dist_params_grads,
                dist_startup_prog,
                dist_main_prog,
            )
529 530 531 532 533 534

    def __deepcopy__(self, memo):
        cls = self.__class__
        result = cls.__new__(cls)
        memo[id(self)] = result
        for k, v in self.__dict__.items():
535 536 537 538 539 540 541
            if (
                k == "_main_program"
                or k == "_startup_program"
                or k == "_dist_context"
                or k == "_fleet"
                or k == "_loss"
            ):
542 543 544 545
                setattr(result, k, v)
            else:
                setattr(result, k, copy.deepcopy(v, memo))
        return result