p_norm_kernel.cu 4.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/p_norm_kernel.h"

#include "paddle/fluid/operators/elementwise/elementwise_op_impl.cu.h"
#include "paddle/phi/common/amp_type_traits.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/reduce_function.h"
#include "paddle/phi/kernels/gpu/reduce.h"

namespace phi {

template <typename T>
__device__ __forceinline__ int sgn(T val) {
  return (T(0) < val) - (val < T(0));
}

__device__ __forceinline__ dtype::float16 inline_abs(dtype::float16 x) {
  return static_cast<dtype::float16>(abs(static_cast<float>(x)));
}

__device__ __forceinline__ dtype::bfloat16 inline_abs(dtype::bfloat16 x) {
  return static_cast<dtype::bfloat16>(abs(static_cast<float>(x)));
}

__device__ __forceinline__ float inline_abs(float x) { return abs(x); }
__device__ __forceinline__ double inline_abs(double x) { return abs(x); }

__device__ __forceinline__ int inline_sign(dtype::float16 x) {
  return sgn<dtype::float16>(x);
}
__device__ __forceinline__ int inline_sign(float x) { return sgn<float>(x); }
__device__ __forceinline__ int inline_sign(double x) { return sgn<double>(x); }

__device__ __forceinline__ dtype::float16 inline_pow(dtype::float16 base,
                                                     dtype::float16 exponent) {
  return static_cast<dtype::float16>(
      pow(static_cast<float>(base), static_cast<float>(exponent)));
}
__device__ __forceinline__ dtype::bfloat16 inline_pow(
    dtype::bfloat16 base, dtype::bfloat16 exponent) {
  return static_cast<dtype::bfloat16>(
      pow(static_cast<float>(base), static_cast<float>(exponent)));
}
__device__ __forceinline__ float inline_pow(float base, float exponent) {
  return pow(base, exponent);
}
__device__ __forceinline__ double inline_pow(double base, double exponent) {
  return pow(base, exponent);
}

template <typename T>
struct NonzeroFunctor {
  HOSTDEVICE explicit inline NonzeroFunctor() {}
  HOSTDEVICE inline T operator()(const T x) const {
    return static_cast<T>(static_cast<double>(x) != 0);
  }
};

template <typename T>
struct AbsFunctor {
  HOSTDEVICE explicit inline AbsFunctor() {}
  HOSTDEVICE inline T operator()(const T x) const {
    return static_cast<T>(inline_abs(x));
  }
};

template <typename T>
struct UnsignedPowFunctor {
  HOSTDEVICE explicit inline UnsignedPowFunctor(float porder) {
    this->porder = porder;
  }
  HOSTDEVICE inline T operator()(const T x) const {
    return static_cast<T>(inline_pow(inline_abs(x), static_cast<T>(porder)));
  }
  float porder;
};

template <typename T, typename Context>
void PNormKernel(const Context& dev_ctx,
                 const DenseTensor& x,
                 float porder,
                 int axis,
                 float epsilon,
                 bool keepdim,
                 bool asvector,
                 DenseTensor* out) {
  auto* in_x = &x;
  auto* out_norm = out;
  T* norm = dev_ctx.template Alloc<T>(out);
  auto xdim = in_x->dims();
  std::vector<int64_t> axis_dims = {static_cast<int64_t>(axis)};
  std::vector<int> reduce_axis =
      funcs::details::GetReduceDim(axis_dims, xdim.size(), asvector);

  using MT = typename dtype::MPTypeTrait<T>::Type;
  if (porder == 0) {
    phi::funcs::ReduceKernel<T, T, kps::AddFunctor, NonzeroFunctor<T>>(
        dev_ctx, *in_x, out_norm, NonzeroFunctor<T>(), reduce_axis);
  } else if (porder == INFINITY) {
    phi::funcs::ReduceKernel<T, T, kps::MaxFunctor, AbsFunctor<T>>(
        dev_ctx, *in_x, out_norm, AbsFunctor<T>(), reduce_axis);
  } else if (porder == -INFINITY) {
    phi::funcs::ReduceKernel<T, T, kps::MinFunctor, AbsFunctor<T>>(
        dev_ctx, *in_x, out_norm, AbsFunctor<T>(), reduce_axis);
  } else {
    phi::funcs::ReduceKernel<T, T, kps::AddFunctor, UnsignedPowFunctor<T>>(
        dev_ctx, *in_x, out_norm, UnsignedPowFunctor<T>(porder), reduce_axis);

    const DenseTensor* tmp_norm = out_norm;
    std::vector<const DenseTensor*> ins = {tmp_norm};
    std::vector<DenseTensor*> outs = {out_norm};
    phi::funcs::ElementwiseKernel<T>(
        dev_ctx, ins, &outs, UnsignedPowFunctor<T>(1. / porder));
  }
}
}  // namespace phi

PD_REGISTER_KERNEL(p_norm,
                   GPU,
                   ALL_LAYOUT,
                   phi::PNormKernel,
                   float,
                   double,
                   phi::dtype::float16,
                   phi::dtype::bfloat16) {}