sgd.py 7.2 KB
Newer Older
J
Jiawei Wang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from .optimizer import Optimizer
from ..fluid import core
from ..fluid import framework
from ..fluid.framework import Variable, name_scope
from ..fluid.dygraph import no_grad
W
wanghuancoder 已提交
20
from paddle import _C_ops
21 22 23 24
import warnings
from ..fluid.layer_helper import LayerHelper
from ..fluid import unique_name
from ..fluid import layers
Z
zyfncg 已提交
25
from ..fluid.framework import _in_legacy_dygraph, in_dygraph_mode
J
Jiawei Wang 已提交
26

27 28
__all__ = []

J
Jiawei Wang 已提交
29 30

class SGD(Optimizer):
31
    r"""
J
Jiawei Wang 已提交
32 33 34 35 36 37 38 39 40
    Optimizer of the stochastic gradient descent algorithm.

    .. math::

        param\_out = param - learning\_rate * grad

    Parameters:
        learning_rate (float|Tensor|LearningRateDecay, optional): The learning rate used to update ``Parameter``.
            It can be a float value, a ``Tensor`` with a float type or a LearningRateDecay. The default value is 0.001.
41
        parameters (list|tuple, optional): List/Tuple of ``Tensor`` to update to minimize ``loss``. \
J
Jiawei Wang 已提交
42 43 44
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
        weight_decay (float|WeightDecayRegularizer, optional): The strategy of regularization. \
45 46 47 48 49 50
            It canbe a float value as coeff of L2 regularization or \
            :ref:`api_fluid_regularizer_L1Decay`, :ref:`api_fluid_regularizer_L2Decay`.
            If a parameter has set regularizer using :ref:`api_fluid_ParamAttr` already, \
            the regularization setting here in optimizer will be ignored for this parameter. \
            Otherwise, the regularization setting here in optimizer will take effect. \
            Default None, meaning there is no regularization.
J
Jiawei Wang 已提交
51 52 53 54 55 56 57 58 59 60 61 62
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
        name (str, optional): The default value is None. Normally there is no need for user
                to set this property. For more information, please refer to
                :ref:`api_guide_Name` . 
        
    Examples:
        .. code-block:: python

            import paddle
63 64

            inp = paddle.uniform(min=-0.1, max=0.1, shape=[10, 10], dtype='float32')
J
Jiawei Wang 已提交
65 66 67 68 69
            linear = paddle.nn.Linear(10, 10)
            inp = paddle.to_tensor(inp)
            out = linear(inp)
            loss = paddle.mean(out)
            sgd = paddle.optimizer.SGD(learning_rate=0.1, parameters=linear.parameters(), weight_decay=0.01)
70
            out.backward()
J
Jiawei Wang 已提交
71 72 73 74 75 76 77 78 79 80
            sgd.step()
            sgd.clear_grad()

    """

    def __init__(self,
                 learning_rate=0.001,
                 parameters=None,
                 weight_decay=None,
                 grad_clip=None,
81
                 multi_precision=False,
J
Jiawei Wang 已提交
82 83 84 85 86 87 88 89 90 91
                 name=None):
        if learning_rate is None:
            raise ValueError("learning_rate is not set")
        super(SGD, self).__init__(
            learning_rate=learning_rate,
            parameters=parameters,
            weight_decay=weight_decay,
            grad_clip=grad_clip,
            name=name)
        self.type = "sgd"
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
        self._multi_precision = multi_precision
        self._master_weights = {}

    def _create_master_weight(self, param):
        if param.name in self._master_weights:
            var = self._master_weights[param.name]
        else:
            assert isinstance(self.helper, LayerHelper)

            var_name = param.name + "_fp32_master"
            var_name = unique_name.generate(var_name)
            var = layers.create_global_var(
                name=var_name,
                shape=param.shape,
                value=0,
                dtype='float32',
                persistable=True)
            block = self.helper.startup_program.global_block()
            block.append_op(
                type="cast",
                inputs={"X": [param]},
                outputs={"Out": [var]},
                attrs={
                    "in_dtype": param.dtype,
                    "out_dtype": core.VarDesc.VarType.FP32
                })
            self._master_weights[param.name] = var
        return var

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)
        if isinstance(parameters, dict):
            parameters = self._update_param_group(parameters)

        # Create accumulator tensors for first and second moments
        for p in parameters:
            if self._multi_precision and p.dtype == core.VarDesc.VarType.FP16:
                master_p = self._create_master_weight(p)
                continue
            if p.dtype == core.VarDesc.VarType.FP16 and not self._multi_precision:
                warnings.warn(
                    "Accumulating with FP16 in optimizer can lead to poor accuracy or slow convergence."
                    "Consider using multi_precision=True option of the Adam optimizer."
                )
J
Jiawei Wang 已提交
136

137
    @no_grad
J
Jiawei Wang 已提交
138
    def _append_optimize_op(self, block, param_and_grad):
139 140
        if isinstance(param_and_grad, dict):
            param_and_grad = self._update_param_group(param_and_grad)
141 142 143 144 145 146

        find_master = self._multi_precision and param_and_grad[
            0].dtype == core.VarDesc.VarType.FP16
        master_weight = (self._master_weights[param_and_grad[0].name]
                         if find_master else None)

J
Jiawei Wang 已提交
147
        lr = self._create_param_lr(param_and_grad)
Z
zyfncg 已提交
148 149 150 151 152
        if in_dygraph_mode():
            _C_ops.final_state_sgd(param_and_grad[0], lr, param_and_grad[1],
                                   master_weight, find_master)
            return None
        if _in_legacy_dygraph():
153 154
            _C_ops.sgd(param_and_grad[0], lr, param_and_grad[1], master_weight,
                       param_and_grad[0], master_weight)
J
Jiawei Wang 已提交
155 156 157 158
            return None

        assert isinstance(block, framework.Block)
        # create the optimize op
159 160 161 162 163 164 165 166 167 168 169 170 171 172
        inputs = {
            "Param": param_and_grad[0],
            "Grad": param_and_grad[1],
            "LearningRate": lr
        }

        outputs = {"ParamOut": param_and_grad[0]}

        attrs = {"multi_precision": find_master}

        if find_master:
            inputs["MasterParam"] = master_weight
            outputs["MasterParamOut"] = master_weight

J
Jiawei Wang 已提交
173 174
        sgd_op = block.append_op(
            type=self.type,
175 176 177
            inputs=inputs,
            outputs=outputs,
            attrs=attrs,
J
Jiawei Wang 已提交
178 179 180
            stop_gradient=True)

        return sgd_op
181 182 183 184

    def _update_param_group(self, parameters):
        parameters = parameters.get('params')
        return parameters