primops.py 9.5 KB
Newer Older
L
levi131 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
from paddle.fluid.layer_helper import LayerHelper
from .primreg import REGISTER_FN


def _simple_unop(helper):
    optype = helper.layer_type
    x, out = tuple(map(helper.kwargs.get, ('x', 'out')))
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(type=optype, inputs={'X': x}, outputs={'Y': out}, attrs={})
    return out


def _simple_binop(helper):
    optype = helper.layer_type
    x, y, out = tuple(map(helper.kwargs.get, ('x', 'y', 'out')))
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(
        type=optype, inputs={'X': x,
                             'Y': y}, outputs={'Z': out}, attrs={})
    return out


def _manipulation_unop(helper):
    optype = helper.layer_type
    x, out = tuple(map(helper.kwargs.get, ('x', 'out')))

    attrs = {
        k: helper.kwargs[k]
        for k in ('shape', 'axis', 'index') if k in helper.kwargs
    }

    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(
        type=optype, inputs={'X': x}, outputs={'Y': out}, attrs=attrs)
    return out


# Each primitive op is given a Python constructor for sake of convenience.
def fill_const(value, shape, dtype, out=None):
    attrs = {'value': value, 'shape': shape, 'dtype': dtype}
    helper = LayerHelper('fill_constant_p', **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(type=helper.layer_type, outputs={'Y': out}, attrs=attrs)
    return out


def neg(x, out=None):
    zero = fill_const(0.0, x.shape, x.dtype)
    return sub(zero, x)


def set_value(x, y, axis, starts, ends, strides, out):
    assert x is out, "x and out should be the same Tensor in set_value"
    attrs = {'axes': axis, 'starts': starts, 'ends': ends, 'steps': strides}
    helper = LayerHelper('set_value', **locals())
    helper.append_op(
        type=helper.layer_type,
        inputs={'Input': x,
                'ValueTensor': y},
        outputs={'Out': out},
        attrs=attrs)
    return out


@REGISTER_FN('add_p', 'X', 'Y', 'Z')
def add(x, y, out=None):
    return _simple_binop(LayerHelper('add_p', **locals()))


@REGISTER_FN('sub_p', 'X', 'Y', 'Z')
def sub(x, y, out=None):
    return _simple_binop(LayerHelper('sub_p', **locals()))


@REGISTER_FN('mul_p', 'X', 'Y', 'Z')
def mul(x, y, out=None):
    return _simple_binop(LayerHelper('mul_p', **locals()))


@REGISTER_FN('div_p', 'X', 'Y', 'Z')
def div(x, y, out=None):
    return _simple_binop(LayerHelper('div_p', **locals()))


@REGISTER_FN('sqrt_p', 'X', 'Y')
def sqrt(x, out=None):
    return _simple_unop(LayerHelper('sqrt_p', **locals()))


@REGISTER_FN('tanh_p', 'X', 'Y')
def tanh(x, out=None):
    return _simple_unop(LayerHelper('tanh_p', **locals()))


@REGISTER_FN('reshape_p', 'X', 'Y')
def reshape(x, shape, out=None):
    return _manipulation_unop(LayerHelper('reshape_p', **locals()))


@REGISTER_FN('broadcast_p', 'X', 'Y')
def broadcast(x, shape, out=None):
    return _manipulation_unop(LayerHelper('broadcast_p', **locals()))


@REGISTER_FN('transpose_p', 'X', 'Y')
def transpose(x, axis=None, out=None):
    return _manipulation_unop(LayerHelper('transpose_p', **locals()))


@REGISTER_FN('split_p', 'X', 'YS')
def split(x, num_or_sections, axis=0, outs=None):
    if isinstance(num_or_sections, (list, tuple)):
        n = len(num_or_sections)
    else:
137 138 139
        if not isinstance(num_or_sections, int):
            raise TypeError(
                f'num_or_sections must be int, but got {type(num_or_sections)}.')
L
levi131 已提交
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
        n = num_or_sections

    attrs = {'num_or_sections': num_or_sections, 'axis': axis}

    helper = LayerHelper('split_p', **locals())
    if outs is None:
        outs = [
            helper.create_variable_for_type_inference(dtype=x.dtype)
            for i in range(n)
        ]
    helper.append_op(
        type=helper.layer_type,
        inputs={'X': x},
        outputs={'YS': outs},
        attrs=attrs)
    return outs


@REGISTER_FN('concat_p', 'XS', 'Y')
def concat(xs, axis=0, out=None):
160 161
    if isinstance(xs, paddle.fluid.framework.Variable):
        xs = [xs]
L
levi131 已提交
162 163 164 165 166 167 168 169 170 171 172 173 174 175
    attrs = {'axis': axis}
    helper = LayerHelper('concat_p', **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=xs[0].dtype)
    helper.append_op(
        type=helper.layer_type,
        inputs={'XS': xs},
        outputs={'Y': out},
        attrs=attrs)
    return out


@REGISTER_FN('reduce_p', 'X', 'Y')
def reduce(x, axis, keepdim=False, out=None):
176 177 178 179
    if not isinstance(axis, (tuple, list)):
        raise TypeError(f'axis must be tuple or list, but got {type(axis)}')
    if not isinstance(keepdim, bool):
        raise TypeError(f'keepdim must be bool, but got {type(keepdim)}')
L
levi131 已提交
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
    attrs = {'axis': axis, 'keepdim': keepdim}

    helper = LayerHelper('reduce_p', **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(
        type=helper.layer_type,
        inputs={'X': x},
        outputs={'Y': out},
        attrs=attrs)
    return out


@REGISTER_FN('matmul_p', 'X', 'Y', 'Z')
def matmul(x, y, out=None):
    return _simple_binop(LayerHelper('matmul_p', **locals()))


@REGISTER_FN('slice_select_p', 'X', 'Y')
def slice_select(x, axis, starts, ends, strides, out=None):
201 202 203 204 205 206 207 208 209 210 211 212 213 214
    if not isinstance(axis, (list, tuple)):
        raise TypeError(f'Argument type error. `axis` is supposed to be list or'
                        f' tuple but found {type(axis)}.')
    if not isinstance(starts, (list, tuple)):
        raise TypeError(
            f'Argument type error. `starts` is supposed to be list or'
            f' tuple but found {type(starts)}.')
    if not isinstance(ends, (list, tuple)):
        raise TypeError(f'Argument type error. `ends` is supposed to be list or'
                        f' tuple but found {type(ends)}.')
    assert len(axis) == len(starts) == len(ends) == len(strides), (
        f'len(axis), len(starts), len(ends) and len(strides) should be equal, '
        f'but len(axis)={len(axis)}, len(starts)={len(starts)}, '
        f'len(ends)={len(ends)} and len(strides)={len(strides)}')
L
levi131 已提交
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229

    attrs = {'axis': axis, 'starts': starts, 'ends': ends, 'strides': strides}
    helper = LayerHelper('slice_select_p', **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type=helper.layer_type,
        inputs={'X': x},
        outputs={'Y': out},
        attrs=attrs)
    return out


@REGISTER_FN('slice_assign_p', 'X', 'Y', 'Z')
def slice_assign(x, y, axis, starts, ends, strides, out=None):
230 231 232 233 234 235 236
    assert len(starts) == len(ends) == len(strides) == len(axis), (
        f'len(starts), len(ends), len(strides) and len(axis) should be equal, '
        f'but len(starts)={len(starts)}, len(ends)={len(ends)}, '
        f'len(strides)={len(strides)} and len(axis)={len(axis)}')
    assert len(y.shape) == len(x.shape), (
        f'len(y.shape) should be equal to len(x.shape), '
        f'but len(y.shape)={len(y.shape)} and len(x.shape)={len(x.shape)}.')
L
levi131 已提交
237 238 239 240 241 242 243 244 245 246 247 248 249 250

    attrs = {'axis': axis, 'starts': starts, 'ends': ends, 'strides': strides}
    helper = LayerHelper('slice_assign_p', **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type=helper.layer_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Z': out},
        attrs=attrs)
    return out


251
@REGISTER_FN('gather_p', 'X', 'IndexTensor', 'Y')
L
levi131 已提交
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
def gather(x, indextensor, axis, out=None):
    attrs = {'axis': axis}
    helper = LayerHelper('gather_p', **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type=helper.layer_type,
        inputs={'X': x,
                'IndexTensor': indextensor},
        outputs={'Y': out},
        attrs=attrs)
    return out


@REGISTER_FN('scatter_add_p', 'X', 'Y', 'IndexTensor', 'Z')
def scatter_add(x, y, indextensor, axis, out=None):
268 269 270 271 272 273 274 275 276 277
    assert len(x.shape) == len(y.shape), (
        f'len(x.shape) should be equal to len(y.shape), '
        f'but len(x.shape)={len(x.shape)} and len(y.shape)={len(y.shape)}.')
    assert len(
        indextensor.shape
    ) == 1, f'len(indextensor.shape) must be equal to 1, but got {len(indextensor.shape)}.'
    assert y.shape[axis] == indextensor.shape[0], (
        f'y.shape[axis] should be equal to indextensor.shape[0], '
        f'but y.shape[axis]={y.shape[axis]} and '
        f'indextensor.shape[0]={indextensor.shape[0]}.')
L
levi131 已提交
278 279 280 281 282 283 284 285 286 287 288 289
    attrs = {'axis': axis}
    helper = LayerHelper('scatter_add_p', **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type=helper.layer_type,
        inputs={'X': x,
                'Y': y,
                'IndexTensor': indextensor},
        outputs={'Z': out},
        attrs=attrs)
    return out