test_grad_clip_minimize.py 8.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import contextlib
import unittest
import numpy as np
import six

import paddle
import paddle.fluid as fluid
from paddle.fluid import core

from paddle.fluid.dygraph.base import to_variable

28
from paddle.fluid.clip import GradientClipByValue, GradientClipByNorm, GradientClipByGlobalNorm
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67


class TestGradClipByGlobalNorm(unittest.TestCase):
    def init_value(self):
        self.max_global_norm = 5.0
        self.init_scale = 1.0

        self.shape = (20, 20)

    def generate_p_g(self):

        self.para_and_grad = []
        for i in range(10):
            self.para_and_grad.append(
                (np.random.uniform(-self.init_scale, self.init_scale,
                                   self.shape).astype('float32'),
                 np.random.uniform(-self.init_scale, self.init_scale,
                                   self.shape).astype('float32')))

    def get_numpy_global_norm_result(self):
        gloabl_norm = 0.0
        for p, g in self.para_and_grad:
            gloabl_norm += np.sum(np.square(g))

        gloabl_norm_np = np.sqrt(gloabl_norm)

        new_np_p_g = []
        scale = 1.0
        if gloabl_norm_np > self.max_global_norm:
            scale = self.max_global_norm / gloabl_norm_np

        for p, g in self.para_and_grad:
            new_np_p_g.append((p, g * scale))

        return new_np_p_g

    def get_dygrap_global_norm_result(self):
        with fluid.dygraph.guard():

68
            gloabl_norm_clip = GradientClipByGlobalNorm(self.max_global_norm)
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
            p_g_var = []
            for p, g in self.para_and_grad:
                new_p = to_variable(p)
                new_g = to_variable(g)
                p_g_var.append((new_p, new_g))

            new_p_g_var = gloabl_norm_clip(p_g_var)

            p_g_dy_out = []
            for p, g in new_p_g_var:
                p_g_dy_out.append((p.numpy(), g.numpy()))

            return p_g_dy_out

    def test_clip_by_global_norm(self):
        self.init_value()
        self.generate_p_g()
        np_p_g = self.get_numpy_global_norm_result()
        dy_out_p_g = self.get_dygrap_global_norm_result()

        for (p_np, g_np), (p_dy, g_dy) in zip(np_p_g, dy_out_p_g):
            self.assertTrue(np.allclose(g_np, g_dy, rtol=1e-6, atol=1e-8))

    def test_clip_by_global_norm_2(self):
        self.init_value()

        self.init_scale = 0.2
        self.max_global_norm = 10
        self.generate_p_g()
        np_p_g = self.get_numpy_global_norm_result()
        dy_out_p_g = self.get_dygrap_global_norm_result()

        for (p_np, g_np), (p_dy, g_dy) in zip(np_p_g, dy_out_p_g):
            self.assertTrue(np.allclose(g_np, g_dy, rtol=1e-6, atol=1e-8))


class TestGradClipByNorm(unittest.TestCase):
    def init_value(self):
        self.max_norm = 5.0
        self.init_scale = 1.0

        self.shape = (10, 10)

    def generate_p_g(self):

        self.para_and_grad = []
        for i in range(10):
            self.para_and_grad.append(
                (np.random.uniform(-self.init_scale, self.init_scale,
                                   self.shape).astype('float32'),
                 np.random.uniform(-self.init_scale, self.init_scale,
                                   self.shape).astype('float32')))

    def get_numpy_norm_result(self):

        new_p_g = []
        for p, g in self.para_and_grad:
            norm = np.sqrt(np.sum(np.square(g)))

            if norm > self.max_norm:
                new_p_g.append((p, g * self.max_norm / norm))
            else:
                new_p_g.append((p, g))

        return new_p_g

    def get_dygrap_norm_result(self):
        with fluid.dygraph.guard():

138
            norm_clip = GradientClipByNorm(self.max_norm)
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
            p_g_var = []
            for p, g in self.para_and_grad:
                new_p = to_variable(p)
                new_g = to_variable(g)
                p_g_var.append((new_p, new_g))

            new_p_g_var = norm_clip(p_g_var)

            p_g_dy_out = []
            for p, g in new_p_g_var:
                p_g_dy_out.append((p.numpy(), g.numpy()))

            return p_g_dy_out

    def test_clip_by_norm(self):
        self.init_value()
        self.generate_p_g()
        np_p_g = self.get_numpy_norm_result()
        dy_out_p_g = self.get_dygrap_norm_result()

        for (p_np, g_np), (p_dy, g_dy) in zip(np_p_g, dy_out_p_g):
            self.assertTrue(np.allclose(g_np, g_dy, rtol=1e-6, atol=1e-8))

    def test_clip_by_norm_2(self):
        self.init_value()

        self.init_scale = 0.2
        self.max_norm = 10.0
        self.generate_p_g()
        np_p_g = self.get_numpy_norm_result()
        dy_out_p_g = self.get_dygrap_norm_result()

        for (p_np, g_np), (p_dy, g_dy) in zip(np_p_g, dy_out_p_g):
            self.assertTrue(np.allclose(g_np, g_dy, rtol=1e-6, atol=1e-8))


class TestGradClipByValue(unittest.TestCase):
    def init_value(self):
        self.max_value = 0.8
        self.min_value = -0.1
        self.init_scale = 1.0

        self.shape = (10, 10)

    def generate_p_g(self):

        self.para_and_grad = []
        for i in range(10):
            self.para_and_grad.append(
                (np.random.uniform(-self.init_scale, self.init_scale,
                                   self.shape).astype('float32'),
                 np.random.uniform(-self.init_scale, self.init_scale,
                                   self.shape).astype('float32')))

    def get_numpy_clip_result(self):

        new_p_g = []
        for p, g in self.para_and_grad:
            new_p_g.append((p, np.clip(g, self.min_value, self.max_value)))

        return new_p_g

    def get_dygrap_clip_result(self):
        with fluid.dygraph.guard():
203 204
            value_clip = GradientClipByValue(
                max=self.max_value, min=self.min_value)
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
            p_g_var = []
            for p, g in self.para_and_grad:
                new_p = to_variable(p)
                new_g = to_variable(g)
                p_g_var.append((new_p, new_g))

            new_p_g_var = value_clip(p_g_var)

            p_g_dy_out = []
            for p, g in new_p_g_var:
                p_g_dy_out.append((p.numpy(), g.numpy()))

            return p_g_dy_out

    def test_clip_by_value(self):
        self.init_value()
        self.generate_p_g()
        np_p_g = self.get_numpy_clip_result()
        dy_out_p_g = self.get_dygrap_clip_result()

        for (p_np, g_np), (p_dy, g_dy) in zip(np_p_g, dy_out_p_g):
            self.assertTrue(np.allclose(g_np, g_dy, rtol=1e-6, atol=1e-8))

228
    def test_clip_by_value_2(self):
229 230 231 232 233 234 235 236 237 238
        self.init_value()

        self.init_scale = 0.2
        self.generate_p_g()
        np_p_g = self.get_numpy_clip_result()
        dy_out_p_g = self.get_dygrap_clip_result()

        for (p_np, g_np), (p_dy, g_dy) in zip(np_p_g, dy_out_p_g):
            self.assertTrue(np.allclose(g_np, g_dy, rtol=1e-6, atol=1e-8))

239
    def test_clip_by_value_3(self):
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
        self.init_value()

        self.init_scale = 0.5
        self.max_value = 0.6
        self.min_value = None
        self.generate_p_g()
        np_p_g = self.get_numpy_clip_result()
        dy_out_p_g = self.get_dygrap_clip_result()

        for (p_np, g_np), (p_dy, g_dy) in zip(np_p_g, dy_out_p_g):
            self.assertTrue(np.allclose(g_np, g_dy, rtol=1e-6, atol=1e-8))


if __name__ == '__main__':
    unittest.main()