test_gather_nd_op.py 8.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np
from op_test import OpTest
import paddle.fluid as fluid
21
import paddle
22 23 24


class TestGatherNdOpWithEmptyIndex(OpTest):
H
hong 已提交
25
    # Index has empty element, which means copy entire tensor
26 27 28

    def setUp(self):
        self.op_type = "gather_nd"
H
hong 已提交
29
        self.python_api = paddle.gather_nd
30
        xnp = np.random.random((5, 20)).astype("float64")
31 32 33 34 35 36
        self.inputs = {'X': xnp, 'Index': np.array([[], []]).astype("int32")}
        self.outputs = {
            'Out': np.vstack((xnp[np.newaxis, :], xnp[np.newaxis, :]))
        }

    def test_check_output(self):
37
        self.check_output(check_eager=False)
38 39

    def test_check_grad(self):
40
        self.check_grad(['X'], 'Out', check_eager=False)
41 42


43 44 45
class TestGatherNdOpWithIndex1(OpTest):
    def setUp(self):
        self.op_type = "gather_nd"
H
hong 已提交
46
        self.python_api = paddle.gather_nd
47 48 49 50 51
        xnp = np.random.random((5, 20)).astype("float64")
        self.inputs = {'X': xnp, 'Index': np.array([1]).astype("int32")}
        self.outputs = {'Out': self.inputs["X"][self.inputs["Index"]]}

    def test_check_output(self):
52
        self.check_output(check_eager=False)
53 54

    def test_check_grad(self):
55
        self.check_grad(['X'], 'Out', check_eager=False)
56 57


58
class TestGatherNdOpWithLowIndex(OpTest):
59
    #Index has low rank, X has high rank
60 61 62

    def setUp(self):
        self.op_type = "gather_nd"
H
hong 已提交
63
        self.python_api = paddle.gather_nd
Z
zhupengyang 已提交
64
        xnp = np.random.uniform(0, 100, (10, 10)).astype("float64")
65 66 67 68 69 70 71
        index = np.array([[1], [2]]).astype("int64")

        self.inputs = {'X': xnp, 'Index': index}

        self.outputs = {'Out': xnp[tuple(index.T)]}  #[[14, 25, 1], [76, 22, 3]]

    def test_check_output(self):
72
        self.check_output(check_eager=False)
73 74

    def test_check_grad(self):
75
        self.check_grad(['X'], 'Out', check_eager=False)
76 77


78 79 80 81 82
class TestGatherNdOpIndex1(OpTest):
    #Index has low rank, X has high rank

    def setUp(self):
        self.op_type = "gather_nd"
H
hong 已提交
83
        self.python_api = paddle.gather_nd
84
        xnp = np.random.uniform(0, 100, (10, 10)).astype("float64")
H
hong 已提交
85
        index = np.array([1, 2]).astype("int32")
86 87 88 89 90 91

        self.inputs = {'X': xnp, 'Index': index}

        self.outputs = {'Out': xnp[tuple(index.T)]}

    def test_check_output(self):
92
        self.check_output(check_eager=False)
93 94

    def test_check_grad(self):
95
        self.check_grad(['X'], 'Out', check_eager=False)
96 97


98
class TestGatherNdOpWithSameIndexAsX(OpTest):
99
    #Index has same rank as X's rank
100 101 102

    def setUp(self):
        self.op_type = "gather_nd"
H
hong 已提交
103
        self.python_api = paddle.gather_nd
Z
zhupengyang 已提交
104
        xnp = np.random.uniform(0, 100, (10, 10)).astype("float64")
105 106 107 108 109 110
        index = np.array([[1, 1], [2, 1]]).astype("int64")

        self.inputs = {'X': xnp, 'Index': index}
        self.outputs = {'Out': xnp[tuple(index.T)]}  #[25, 22]

    def test_check_output(self):
111
        self.check_output(check_eager=False)
112 113

    def test_check_grad(self):
114
        self.check_grad(['X'], 'Out', check_eager=False)
115 116 117


class TestGatherNdOpWithHighRankSame(OpTest):
118
    #Both Index and X have high rank, and Rank(Index) = Rank(X)
119 120 121

    def setUp(self):
        self.op_type = "gather_nd"
H
hong 已提交
122
        self.python_api = paddle.gather_nd
S
ShenLiang 已提交
123
        shape = (5, 2, 3, 1, 10)
124
        xnp = np.random.rand(*shape).astype("float64")
S
ShenLiang 已提交
125
        index = np.vstack([np.random.randint(0, s, size=2) for s in shape]).T
126 127 128 129 130

        self.inputs = {'X': xnp, 'Index': index.astype("int32")}
        self.outputs = {'Out': xnp[tuple(index.T)]}

    def test_check_output(self):
131
        self.check_output(check_eager=False)
132 133

    def test_check_grad(self):
134
        self.check_grad(['X'], 'Out', check_eager=False)
135 136 137


class TestGatherNdOpWithHighRankDiff(OpTest):
138
    #Both Index and X have high rank, and Rank(Index) < Rank(X)
139 140 141

    def setUp(self):
        self.op_type = "gather_nd"
H
hong 已提交
142
        self.python_api = paddle.gather_nd
S
ShenLiang 已提交
143
        shape = (2, 3, 4, 1, 10)
144
        xnp = np.random.rand(*shape).astype("float64")
S
ShenLiang 已提交
145 146
        index = np.vstack([np.random.randint(0, s, size=200) for s in shape]).T
        index_re = index.reshape([20, 5, 2, 5])
147 148

        self.inputs = {'X': xnp, 'Index': index_re.astype("int32")}
S
ShenLiang 已提交
149
        self.outputs = {'Out': xnp[tuple(index.T)].reshape([20, 5, 2])}
150 151

    def test_check_output(self):
152
        self.check_output(check_eager=False)
153 154

    def test_check_grad(self):
155
        self.check_grad(['X'], 'Out', check_eager=False)
156 157 158


#Test Python API
159
class TestGatherNdOpAPI(unittest.TestCase):
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
    def test_case1(self):
        x1 = fluid.layers.data(
            name='x1', shape=[30, 40, 50, 60], dtype='float32')
        index1 = fluid.layers.data(name='index1', shape=[2, 4], dtype='int32')
        output1 = fluid.layers.gather_nd(x1, index1)

    def test_case2(self):
        x2 = fluid.layers.data(name='x2', shape=[30, 40, 50], dtype='float32')
        index2 = fluid.layers.data(name='index2', shape=[2, 2], dtype='int64')
        output2 = fluid.layers.gather_nd(x2, index2)

    def test_case3(self):
        x3 = fluid.layers.data(name='x3', shape=[3, 4, 5], dtype='float32')
        index3 = fluid.layers.data(name='index3', shape=[2, 1], dtype='int32')
        output3 = fluid.layers.gather_nd(x3, index3, name="gather_nd_layer")


#Test Raise Index Error
178
class TestGatherNdOpRaise(unittest.TestCase):
179 180 181 182 183 184 185 186 187 188
    def test_check_raise(self):
        def check_raise_is_test():
            try:
                x = fluid.layers.data(
                    name='x', shape=[3, 4, 5], dtype='float32')
                index = fluid.layers.data(
                    name='index', shape=[2, 10], dtype='int32')
                output = fluid.layers.gather_nd(x, index)
            except Exception as e:
                t = \
189
                "Input(Index).shape[-1] should be no greater than Input(X).rank"
190 191 192 193 194 195
                if t in str(e):
                    raise IndexError

        self.assertRaises(IndexError, check_raise_is_test)


196 197 198 199 200 201
class TestGatherNdError(unittest.TestCase):
    def test_error(self):
        with paddle.static.program_guard(paddle.static.Program(),
                                         paddle.static.Program()):

            shape = [8, 9, 6]
202 203 204
            x = paddle.fluid.data(shape=shape, dtype='float32', name='x')
            index = paddle.fluid.data(shape=shape, dtype='bool', name='index')
            index_float = paddle.fluid.data(
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
                shape=shape, dtype='float32', name='index_float')
            np_x = np.random.random(shape).astype('float32')
            np_index = np.array(np.random.randint(2, size=shape, dtype=bool))

            def test_x_type():
                paddle.gather_nd(np_x, index)

            self.assertRaises(TypeError, test_x_type)

            def test_index_type():
                paddle.gather_nd(x, np_index)

            self.assertRaises(TypeError, test_index_type)

            def test_index_dtype():
                paddle.gather_nd(x, index_float)

            self.assertRaises(TypeError, test_index_dtype)


class TestGatherNdAPI2(unittest.TestCase):
    def test_static(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            data1 = fluid.layers.data('data1', shape=[-1, 2], dtype='float64')
            index = fluid.layers.data('index', shape=[-1, 1], dtype='int32')
            out = paddle.gather_nd(data1, index)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            input = np.array([[1, 2], [3, 4], [5, 6]])
            index_1 = np.array([[1]])
            result, = exe.run(feed={"data1": input,
                                    "index": index_1},
                              fetch_list=[out])
            expected_output = np.array([[3, 4]])
        self.assertTrue(np.allclose(result, expected_output))

    def test_imperative(self):
        paddle.disable_static()
        input_1 = np.array([[1, 2], [3, 4], [5, 6]])
        index_1 = np.array([[1]])
        input = fluid.dygraph.to_variable(input_1)
        index = fluid.dygraph.to_variable(index_1)
        output = paddle.fluid.layers.gather(input, index)
        output_np = output.numpy()
        expected_output = np.array([3, 4])
        self.assertTrue(np.allclose(output_np, expected_output))
        paddle.enable_static()


254
if __name__ == "__main__":
H
hong 已提交
255
    paddle.enable_static()
256
    unittest.main()