test_affine_channel_op.py 4.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16
"""
Unit testing for affine_channel_op
"""
17 18 19 20 21 22 23

from __future__ import print_function

import unittest
import numpy as np
from op_test import OpTest
import paddle.fluid.core as core
24
import paddle.fluid as fluid
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42


def affine_channel(x, scale, bias, layout):
    C = x.shape[1] if layout == 'NCHW' else x.shape[-1]
    if len(x.shape) == 4:
        new_shape = (1, C, 1, 1) if layout == 'NCHW' else (1, 1, 1, C)
    else:
        new_shape = (1, C)
    scale = scale.reshape(new_shape)
    bias = bias.reshape(new_shape)
    return x * scale + bias


class TestAffineChannelOp(OpTest):
    def setUp(self):
        self.op_type = "affine_channel"
        self.init_test_case()

43 44 45
        x = np.random.random(self.shape).astype("float64")
        scale = np.random.random(self.C).astype("float64")
        bias = np.random.random(self.C).astype("float64")
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65

        y = affine_channel(x, scale, bias, self.layout)

        self.inputs = {'X': x, 'Scale': scale, 'Bias': bias}
        self.attrs = {'data_layout': self.layout}
        self.outputs = {'Out': y}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X', 'Scale', 'Bias'], 'Out')

    def test_check_grad_stopgrad_dx(self):
        self.check_grad(['Scale', 'Bias'], 'Out', no_grad_set=set('X'))

    def test_check_grad_stopgrad_dscale_dbias(self):
        self.check_grad(['X'], 'Out', no_grad_set=set(['Scale', 'Bias']))

    def init_test_case(self):
66
        self.shape = [2, 100, 3, 3]
Z
zhupengyang 已提交
67
        self.C = 100
68 69 70
        self.layout = 'NCHW'


71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
class TestAffineChannelOpError(unittest.TestCase):
    def test_errors(self):
        with fluid.program_guard(fluid.Program()):

            def test_x_type():
                input_data = np.random.random(2, 1, 2, 2).astype("float32")
                fluid.layers.affine_channel(input_data)

            self.assertRaises(TypeError, test_x_type)

            def test_x_dtype():
                x2 = fluid.layers.data(
                    name='x2', shape=[None, 1, 2, 2], dtype='int32')
                fluid.layers.affine_channel(x2)

            self.assertRaises(TypeError, test_x_dtype)

            def test_scale_type():
                x3 = fluid.layers.data(
                    name='x3', shape=[None, 1, 2, 2], dtype='float32')
                fluid.layers.affine_channel(x3, scale=1)

            self.assertRaises(TypeError, test_scale_type)

            def test_bias_type():
                x4 = fluid.layers.data(
                    name='x4', shape=[None, 1, 2, 2], dtype='float32')
                fluid.layers.affine_channel(x4, bias=1)

            self.assertRaises(TypeError, test_bias_type)


103 104
class TestAffineChannelNHWC(TestAffineChannelOp):
    def init_test_case(self):
105
        self.shape = [2, 3, 3, 100]
Z
zhupengyang 已提交
106
        self.C = 100
107 108
        self.layout = 'NHWC'

Q
qingqing01 已提交
109 110 111 112 113 114
    def test_check_grad_stopgrad_dx(self):
        return

    def test_check_grad_stopgrad_dscale_dbias(self):
        return

115 116 117

class TestAffineChannel2D(TestAffineChannelOp):
    def init_test_case(self):
118
        self.shape = [2, 100]
Z
zhupengyang 已提交
119
        self.C = 100
120 121
        self.layout = 'NCHW'

Q
qingqing01 已提交
122 123 124 125 126 127
    def test_check_grad_stopgrad_dx(self):
        return

    def test_check_grad_stopgrad_dscale_dbias(self):
        return

128

129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
# TODO(qingqing): disable unit testing for large shape
#class TestAffineChannelNCHWLargeShape(TestAffineChannelOp):
#    def init_test_case(self):
#        self.shape = [4, 128, 112, 112]
#        self.C = 128
#        self.layout = 'NCHW'
#
#    # since the gradient check is very slow in large shape, so skip check_grad
#    def test_check_grad(self):
#        pass
#
#    def test_check_grad_stopgrad_dx(self):
#        pass
#
#    def test_check_grad_stopgrad_dscale_dbias(self):
#        pass

#class TestAffineChannelNHWCLargeShape(TestAffineChannelNCHWLargeShape):
#    def init_test_case(self):
#        self.shape = [64, 32, 32, 128]
#        self.C = 128
#        self.layout = 'NHWC'
151 152 153

if __name__ == '__main__':
    unittest.main()