ps_server_pass.py 8.8 KB
Newer Older
Z
ziyoujiyi 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
# 
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# 
#     http://www.apache.org/licenses/LICENSE-2.0
# 
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
from ..ps.utils.public import *
from paddle.framework import core
from .pass_base import PassBase, register_pass
from paddle.optimizer.lr import LRScheduler
from paddle.optimizer.lr import ExponentialDecay, NoamDecay, PiecewiseDecay, NaturalExpDecay, InverseTimeDecay
from paddle.fluid.layers.learning_rate_scheduler import exponential_decay, noam_decay, piecewise_decay, natural_exp_decay, inverse_time_decay


@register_pass("add_lr_decay_table_pass")
class AddLrDecayTablePass(PassBase):
    def __init__(self):
        super(AddLrDecayTablePass, self).__init__()

    def _check_self(self):
        return True

    def _check_conflict(self, other_pass):
        return True

    def _add_tensor_table(self,
                          attrs,
                          feed_var_name,
                          fetch_var_name="",
                          startup_program=None,
                          main_program=None,
                          tensor_table_class=""):
        tensor_table_dict = {}
        tensor_table_dict[feed_var_name] = {}
        tensor_table_dict[feed_var_name]["feed_var_name"] = feed_var_name
        tensor_table_dict[feed_var_name]["fetch_var_name"] = fetch_var_name
        tensor_table_dict[feed_var_name]["startup_program"] = startup_program
        tensor_table_dict[feed_var_name]["main_program"] = main_program
        tensor_table_dict[feed_var_name][
            "tensor_table_class"] = tensor_table_class
        attrs['tensor_table'] = tensor_table_dict

    def _get_lr_sheduler_program(self, lr_sheduler, lr_decay_steps):
        schedler_decay = [
            'NoamDecay', 'NaturalExpDecay', 'InverseTimeDecay',
            'ExponentialDecay'
        ]

        decay_main_program = fluid.framework.Program()
        decay_startup_program = fluid.framework.Program()
        lr_name = ""

        if isinstance(lr_sheduler, ExponentialDecay):
            with fluid.program_guard(decay_main_program, decay_startup_program):
                lr = exponential_decay(1.0, lr_decay_steps, lr_sheduler.gamma,
                                       True)
                lr_name = lr.name
                logging.warn(
                    "ExponentialDecay is set, staircase = True, global learning rate decay step is [ %d ], Change decay steps as follow: \n"
                    "\t strategy = paddle.distributed.fleet.DistributedStrategy() \n "
                    "\t strategy.a_sync = True \n"
                    "\t strategy.a_sync_configs= { 'lr_decay_steps' : YOUR_DECAY_STEP } \n"
                    % lr_decay_steps)
        elif isinstance(lr_sheduler, NoamDecay):
            with fluid.program_guard(decay_main_program, decay_startup_program):
                lr = noam_decay(lr_sheduler.d_model, lr_sheduler.warmup_steps,
                                1.0)
                lr_name = lr.name
                logging.warn("NoamDecay is set, warmup steps is [ %d ]" %
                             lr_sheduler.warmup_steps)
        elif isinstance(lr_sheduler, NaturalExpDecay):
            with fluid.program_guard(decay_main_program, decay_startup_program):
                lr = natural_exp_decay(1.0, lr_decay_steps, lr_sheduler.gamma,
                                       True)
                lr_name = lr.name
                logging.warn(
                    "NaturalExpDecay is set, staircase = True, global learning rate decay step is [ %d ], Change decay steps as follow: \n"
                    "\t strategy = paddle.distributed.fleet.DistributedStrategy() \n "
                    "\t strategy.a_sync = True \n"
                    "\t strategy.a_sync_configs= { 'lr_decay_steps' : YOUR_DECAY_STEP } \n"
                    % lr_decay_steps)
        elif isinstance(lr_sheduler, InverseTimeDecay):
            with fluid.program_guard(decay_main_program, decay_startup_program):
                lr = inverse_time_decay(1.0, lr_decay_steps, lr_sheduler.gamma,
                                        True)
                lr_name = lr.name
                logging.warn(
                    "InverseTimeDecay is set, staircase = True, global learning rate decay step is [ %d ], Change decay steps as follow: \n"
                    "\t strategy = paddle.distributed.fleet.DistributedStrategy() \n "
                    "\t strategy.a_sync = True \n"
                    "\t strategy.a_sync_configs= { 'lr_decay_steps' : YOUR_DECAY_STEP } \n"
                    % lr_decay_steps)
        else:
            raise ValueError(
                "Not supported current LearningRate strategy, please use follow decay strategy: {}".
                format(schedler_decay))

        return decay_main_program, decay_startup_program, lr_name

    def _apply_single_impl(self, main_program, startup_program, pass_ctx):
        attrs = pass_ctx._attrs
        if hasattr(attrs['origin_main_program'], 'lr_sheduler') == False:
            return

        assert isinstance(attrs['origin_main_program'].lr_sheduler,
                          LRScheduler), "must be LRScheduler"

        ops = get_optimize_ops(attrs['origin_main_program'])
Z
ziyoujiyi 已提交
118
        lr_decay_main_program, lr_decay_startup_program, lr_name = self._get_lr_sheduler_program(
Z
ziyoujiyi 已提交
119
            attrs['origin_main_program'].lr_sheduler, attrs['lr_decay_steps'])
Z
ziyoujiyi 已提交
120 121 122
        self._add_tensor_table(attrs, "@LR_DECAY_COUNTER@", lr_name,
                               lr_decay_startup_program, lr_decay_main_program,
                               "GlobalStepTable")
Z
ziyoujiyi 已提交
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
        return


@register_pass("add_listen_and_serv_pass")
class AddListenAndServPass(PassBase):
    def __init__(self):
        super(AddListenAndServPass, self).__init__()

    def _check_self(self):
        return True

    def _check_conflict(self, other_pass):
        return True

    def _apply_single_impl(self, main_program, startup_program, pass_ctx):
        attrs = pass_ctx._attrs
        opt = {
            "grad_to_block_id": None,
            "sparse_grad_to_param": None,
            "lr_decay_block_id": None,
            "dense_optimize_blocks": None,
            "sparse_optimize_blocks": None,

            # runtime attribute
            "endpoint": get_ps_endpoint(attrs['role_maker']),
            "pserver_id": get_role_id(attrs['role_maker']),
            "Fanin": get_trainers(attrs['role_maker']),
            "distributed_mode": attrs['ps_mode'],
            "rpc_get_thread_num": -1,
            "rpc_send_thread_num": -1,
            "rpc_prefetch_thread_num": -1
        }
        main_program.global_block().append_op(
            type="listen_and_serv", inputs={'X': []}, outputs={}, attrs=opt)


@register_pass("add_rpc_global_flags_pass")
class AddRpcGlobalFlagsPass(PassBase):
    def __init__(self):
        super(AddRpcGlobalFlagsPass, self).__init__()

    def _check_self(self):
        return True

    def _check_conflict(self, other_pass):
        return True

    def _apply_single_impl(self, main_program, startup_program, pass_ctx):
        pass


@register_pass("add_optimizer_pass")
class AddOptimizerPass(PassBase):
    def __init__(self):
        super(AddOptimizerPass, self).__init__()

    def _check_self(self):
        return True

    def _check_conflict(self, other_pass):
        return True

    def _apply_single_impl(self, main_program, startup_program, pass_ctx):
        pass


@register_pass("add_geo_optimizer_pass")
class AddGeoOptimizerPass(PassBase):
    def __init__(self):
        super(AddGeoOptimizerPass, self).__init__()

    def _check_self(self):
        return True

    def _check_conflict(self, other_pass):
        return True

    def _apply_single_impl(self, main_program, startup_program, pass_ctx):
        pass


@register_pass("build_pserver_startup_program_pass")
class BuildPserverStartupProgramPass(PassBase):
    def __init__(self):
        super(BuildPserverStartupProgramPass, self).__init__()

    def _check_self(self):
        return True

    def _check_conflict(self, other_pass):
        return True

    def _apply_single_impl(self, main_program, startup_program, pass_ctx):
        pass


@register_pass("delete_unused_in_startup_pass")
class DeleteUnusedInStartupPass(PassBase):
    def __init__(self):
        super(DeleteUnusedInStartupPass, self).__init__()

    def _check_self(self):
        return True

    def _check_conflict(self, other_pass):
        return True

    def _apply_single_impl(self, main_program, startup_program, pass_ctx):
        pass