tunable_space.py 4.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16 17
# Notice that the following codes are modified from KerasTuner to implement our own tuner. 
# Please refer to https://github.com/keras-team/keras-tuner/blob/master/keras_tuner/engine/hyperparameters.py.

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
import collections
import contextlib
import copy
import math
import random
import numpy as np

from .tunable_variable import Boolean
from .tunable_variable import Fixed
from .tunable_variable import Choice
from .tunable_variable import IntRange
from .tunable_variable import FloatRange


class TunableSpace(object):
    """
    A TunableSpace is constructed by the tunable variables.
    """

    def __init__(self):
        # Tunable variables for this tunable variables
        self._variables = {}
        # Specific values coresponding to each tunable variable
        self._values = {}

    @property
    def variables(self):
        return self._variables

    @property
    def values(self):
        return self._values

    def get_value(self, name):
        if name in self.values:
            return self.values[name]
        else:
            raise KeyError("{} does not exist.".format(name))

    def set_value(self, name, value):
        if name in self.values:
            self.values[name] = value
        else:
            raise KeyError("{} does not exist.".format(name))

    def _exists(self, name):
        if name in self._variables:
            return True
        return False

    def _retrieve(self, tv):
        tv = tv.__class__.from_state(tv.get_state())
        if self._exists(tv.name):
            return self.get_value(tv.name)
        return self._register(tv)

    def _register(self, tv):
        self._variables[tv.name] = tv
        if tv.name not in self.values:
            self.values[tv.name] = tv.default
        return self.values[tv.name]

    def __getitem__(self, name):
        return self.get_value(name)

    def __setitem__(self, name, value):
        self.set_value(name, value)

    def __contains__(self, name):
        try:
            self.get_value(name)
            return True
        except (KeyError, ValueError):
            return False

    def fixed(self, name, default):
        tv = Fixed(name=name, default=default)
        return self._retrieve(tv)

    def boolean(self, name, default=False):
        tv = Boolean(name=name, default=default)
        return self._retrieve(tv)

    def choice(self, name, values, default=None):
        tv = Choice(name=name, values=values, default=default)
        return self._retrieve(tv)

    def int_range(self, name, start, stop, step=1, default=None):
        tv = IntRange(
            name=name, start=start, stop=stop, step=step, default=default)
        return self._retrieve(tv)

    def float_range(self, name, start, stop, step=None, default=None):
        tv = FloatRange(
            name=name, start=start, stop=stop, step=step, default=default)
        return self._retrieve(tv)

    def get_state(self):
        return {
            "variables": [{
                "class_name": v.__class__.__name__,
                "state": v.get_state()
            } for v in self._variables.values()],
            "values": dict((k, v) for (k, v) in self.values.items())
        }

    @classmethod
    def from_state(cls, state):
        ts = cls()
        for v in state["variables"]:
            v = _deserialize_tunable_variable(v)
            ts._variables[v.name] = v
        ts._values = dict((k, v) for (k, v) in state["values"].items())
        return ts


def _deserialize_tunable_variable(state):
    classes = (Boolean, Fixed, Choice, IntRange, FloatRange)
    cls_name_to_cls = {cls.__name__: cls for cls in classes}

    if isinstance(state, classes):
        return state

    if (not isinstance(state, dict) or "class_name" not in state or
            "state" not in state):
        raise ValueError(
            "Expect state to be a python dict containing class_name and state as keys, but found {}"
            .format(state))

    cls_name = state["class_name"]
    cls = cls_name_to_cls[cls_name]
    if cls is None:
        raise ValueError("Unknown class name {}".format(cls_name))

    cls_state = state["state"]
    deserialized_object = cls.from_state(cls_state)
    return deserialized_object