lookup_table_op.h 4.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
L
Luo Tao 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15 16

#pragma once

17
#include "paddle/framework/eigen.h"
18
#include "paddle/framework/lod_tensor.h"
19
#include "paddle/framework/op_registry.h"
20
#include "paddle/framework/selected_rows.h"
21 22 23 24

namespace paddle {
namespace operators {

F
fengjiayi 已提交
25
using LoDTensor = framework::LoDTensor;
26
using SelectedRows = framework::SelectedRows;
27 28

template <typename T>
Y
Yu Yang 已提交
29
class LookupTableKernel : public framework::OpKernel<T> {
30 31
 public:
  void Compute(const framework::ExecutionContext& context) const override {
F
fengjiayi 已提交
32 33 34
    auto* table_t = context.Input<LoDTensor>("W");      // float tensor
    auto* ids_t = context.Input<LoDTensor>("Ids");      // int tensor
    auto* output_t = context.Output<LoDTensor>("Out");  // float tensor
35
    int64_t padding_idx = context.Attr<int64_t>("padding_idx");
36

F
fengjiayi 已提交
37 38
    int N = table_t->dims()[0];
    int D = table_t->dims()[1];
F
fengjiayi 已提交
39 40 41
    auto* ids = ids_t->data<int64_t>();
    auto* table = table_t->data<T>();
    auto* output = output_t->mutable_data<T>(context.GetPlace());
42
    for (int64_t i = 0; i < ids_t->numel(); ++i) {
43 44 45 46 47 48 49
      if (ids[i] == padding_idx) {
        memset(output + i * D, 0, D * sizeof(T));
      } else {
        PADDLE_ENFORCE_LT(ids[i], N);
        PADDLE_ENFORCE_GE(ids[i], 0);
        memcpy(output + i * D, table + ids[i] * D, D * sizeof(T));
      }
50 51 52 53 54
    }
  }
};

template <typename T>
Y
Yu Yang 已提交
55
class LookupTableGradKernel : public framework::OpKernel<T> {
56 57
 public:
  void Compute(const framework::ExecutionContext& context) const override {
58
    bool is_sparse = context.Attr<bool>("is_sparse");
59 60
    int64_t padding_idx = context.Attr<int64_t>("padding_idx");

61
    if (is_sparse) {
F
fengjiayi 已提交
62 63 64
      auto* ids = context.Input<LoDTensor>("Ids");
      auto* table = context.Input<LoDTensor>("W");
      auto* d_output = context.Input<LoDTensor>(framework::GradVarName("Out"));
65
      auto* d_table = context.Output<SelectedRows>(framework::GradVarName("W"));
66

67 68
      auto* ids_data = ids->data<int64_t>();
      auto ids_dim = ids->dims();
69

70 71 72
      framework::Vector<int64_t> new_rows;
      new_rows.reserve(ids_dim[0]);
      for (int64_t i = 0; i < ids_dim[0]; i++) {
73 74 75
        if (ids_data[i] == padding_idx)
          continue;  // Paddings are not trainable and the gradient are not
                     // necessary.
76 77 78
        new_rows.push_back(ids_data[i]);
      }
      d_table->set_rows(new_rows);
79

80 81 82 83 84 85 86 87 88 89 90 91
      auto* d_table_value = d_table->mutable_value();
      d_table_value->Resize({ids_dim[0], table->dims()[1]});
      d_table_value->mutable_data<T>(context.GetPlace());

      d_table->set_height(table->dims()[0]);

      auto* d_output_data = d_output->data<T>();
      auto* d_table_data = d_table_value->data<T>();

      PADDLE_ENFORCE_EQ(d_table_value->dims(), d_output->dims());
      memcpy(d_table_data, d_output_data, sizeof(T) * d_output->numel());
    } else {
F
fengjiayi 已提交
92 93 94 95
      auto* ids = context.Input<LoDTensor>("Ids");
      auto* d_output = context.Input<LoDTensor>(framework::GradVarName("Out"));
      auto* d_table = context.Output<LoDTensor>(framework::GradVarName("W"));
      auto* table = context.Input<LoDTensor>("W");
96 97 98 99 100 101 102 103 104 105

      auto* ids_data = ids->data<int64_t>();
      auto ids_dim = ids->dims();

      int N = table->dims()[0];
      int D = d_output->dims()[1];

      auto* d_output_data = d_output->data<T>();
      auto* d_table_data = d_table->mutable_data<T>(context.GetPlace());

106 107
      memset(d_table_data, 0, d_table->numel() * sizeof(T));

108
      for (int64_t i = 0; i < ids->numel(); ++i) {
109 110 111
        if (ids_data[i] == padding_idx)
          continue;  // Paddings are not trainable and the gradient are not
                     // necessary.
112 113 114
        PADDLE_ENFORCE_LT(ids_data[i], N);
        PADDLE_ENFORCE_GE(ids_data[i], 0);
        for (int j = 0; j < D; ++j) {
115
          d_table_data[ids_data[i] * D + j] += d_output_data[i * D + j];
116
        }
117 118 119 120 121 122 123
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle