utils.py 8.5 KB
Newer Older
R
Roc 已提交
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
R
Roc 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from paddle import _legacy_C_ops
R
Roc 已提交
16
from paddle.fluid import core
R
Roc 已提交
17
from paddle.fluid.data_feeder import check_variable_and_dtype
18 19
from paddle.fluid.framework import _in_legacy_dygraph, in_dygraph_mode
from paddle.fluid.layer_helper import LayerHelper
R
Roc 已提交
20 21


R
Roc 已提交
22
def _number_count(numbers, upper_range):
R
Roc 已提交
23 24 25
    """
    calculate the expert count according to the gate index.
    Args:
R
Roc 已提交
26
        numbers (Tensor): Tensor. The input gate index whose data type should be int32 or int64.
R
Roc 已提交
27 28 29 30 31 32 33 34
        upper_range (int): The number of the experts.
    Returns:
        out (Tensor): The output expert count.
    Examples:
        .. code-block:: python
            # required: distributed
            import paddle

R
Roc 已提交
35
            numbers = [
R
Roc 已提交
36 37 38 39
                [0, 2],
                [0, 2]
            ]
            upper_range = 6
R
Roc 已提交
40 41
            numbers = paddle.to_tensor(numbers, dtype="int32")
            number_count = paddle.distributed.utils.number_count(numbers, upper_range)
R
Roc 已提交
42 43
            print(number_count) # the result: [2, 0, 2, 0, 0, 0]
    """
44
    if in_dygraph_mode():
45
        return _legacy_C_ops.number_count(numbers, 'upper_range', upper_range)
46
    elif _in_legacy_dygraph():
R
Roc 已提交
47
        return core.ops.number_count(numbers, 'upper_range', upper_range)
R
Roc 已提交
48 49 50 51
    else:
        op_type = 'number_count'

        helper = LayerHelper(op_type, **locals())
R
Roc 已提交
52
        out = helper.create_variable_for_type_inference(dtype=numbers.dtype)
R
Roc 已提交
53

54 55 56 57 58 59
        helper.append_op(
            type=op_type,
            inputs={'numbers': numbers},
            outputs={'Out': out},
            attrs={'upper_range': upper_range},
        )
R
Roc 已提交
60
        return out
R
Roc 已提交
61 62 63 64


def _assign_pos(x, cum_count):
    """
65
    Assign pos decides which tokens should be fetched belong to
R
Roc 已提交
66
    specially expert orderingly.
67

R
Roc 已提交
68 69 70
    Args:
        x (Tensor): Tensor. Every element in the list must be a Tensor whose data type
            should be float16, float32, float64, int32 or int64.
71
        cum_count (Tensor): The cumulative sum tokens of counters. Every element in the list must be a Tensor whose
R
Roc 已提交
72
            data type should be int64.
73

R
Roc 已提交
74
    Returns:
75 76
        out (Tensor): Assemble numbers in the order of counters.

R
Roc 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
    Examples:
        .. code-block:: python

            # required: distributed
            import paddle
            number_count = [2, 0, 2, 0]
            numbers = [
                [0, 2],
                [0, 2]
            ]
            number_count = paddle.to_tensor(number_count)
            numbers = paddle.to_tensor(numbers, dtype="int32")
            num_cum = paddle.cumsum(number_count)
            pos = paddle.distributed.utils.assign_pos(x=numbers, cum_count=num_cum)
            print(pos) # the result: (2, 0, 3, 1)
    """
93
    if in_dygraph_mode():
94
        return _legacy_C_ops.assign_pos(x, cum_count, cum_count[-1])
95
    elif _in_legacy_dygraph():
R
Roc 已提交
96 97 98 99 100 101 102
        return core.ops.assign_pos(x, cum_count, cum_count[-1])
    else:
        op_type = 'assign_pos'

        helper = LayerHelper(op_type, **locals())
        out = helper.create_variable_for_type_inference(dtype=cum_count.dtype)

103 104 105 106 107 108 109 110 111
        helper.append_op(
            type=op_type,
            inputs={
                'X': [x],
                'cum_count': [cum_count],
                "eff_num_len": [cum_count[-1]],
            },
            outputs={'Out': [out]},
        )
R
Roc 已提交
112
        return out
R
Roc 已提交
113 114 115 116


def _random_routing(topk_idx, topk_value, prob, topk=2):
    r"""
117 118 119 120 121 122 123 124 125 126 127
    random routing topk gate idx
    ```
        out = topk_idx
        for i in len(topk_idx):
            if topk * value[i][topk-1] < prob[i]:
                out[i][topk-1] = -1
    ```
    Args:
        topk_idx: gate idx, shape=(N, topk)
        topk_value: values, shape = topk_idx.shape
        prob: random prob, shape=(topk_idx.shape[0],)
R
Roc 已提交
128 129
    """
    if topk == 2:
130
        if in_dygraph_mode():
131
            return _legacy_C_ops.random_routing(prob, topk_value, topk_idx)
132
        elif _in_legacy_dygraph():
R
Roc 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
            return core.ops.random_routing(prob, topk_value, topk_idx)
        else:
            raise RuntimeError("Not supporting static mode now")
    else:
        raise RuntimeError("only topk=2 is supported now")


def _limit_by_capacity(expert_count, capacity, n_worker):
    """
    limit the expert count by capacity.
    Args:
        expert_count (Tensor): Tensor. The input expert count whose data type should be int32 or int64.
        capacity (Tensor): Tensor. The input capacity whose data type should be int32 or int64 and the elements of capacity should be the same with expert_count.numel()/n_work.
        n_work (int): The number of the works.
    Returns:
        out (Tensor): The output expert count limit by capacity.
    Examples:
        .. code-block:: python
            # required: distributed
            import paddle
            expert_count = [1, 2, 2, 8, 3, 6]
            capacity = [5, 5, 5]
            n_work = 2
            expert_count = paddle.to_tensor(expert_count, dtype="int32")
            capacity = paddle.to_tensor(capacity, dtype="int32")
            out = paddle.distributed.utils.limit_by_capacity(expert_count, capacity, n_work)
            print(out) # the result: [1, 2, 2, 4, 3, 3]
    """
161
    if in_dygraph_mode():
162 163 164
        return _legacy_C_ops.limit_by_capacity(
            expert_count, capacity, 'n_worker', n_worker
        )
165
    elif _in_legacy_dygraph():
166 167 168
        return core.ops.limit_by_capacity(
            expert_count, capacity, 'n_worker', n_worker
        )
R
Roc 已提交
169 170 171 172 173
    else:
        op_type = 'limit_by_capacity'

        helper = LayerHelper(op_type, **locals())
        out = helper.create_variable_for_type_inference(
174 175 176 177 178 179 180 181 182
            dtype=expert_count.dtype
        )

        helper.append_op(
            type=op_type,
            inputs={'expert_count': expert_count, 'capacity': capacity},
            outputs={'Out': out},
            attrs={'n_worker': n_worker},
        )
R
Roc 已提交
183 184 185 186 187 188 189 190 191 192 193
        return out


def _prune_gate_by_capacity(gate_idx, expert_count, n_expert, n_worker):
    """
    prune gate by capacity(only support CUDA)

    Args:
        gate_idx (Tensor): Represents the gate_id sequence corresponding to the input data with type int32, int64.
        expert_count (Tensor): The quantity value counted on the gate_id sequence of the input data with type int32, int64.
        n_worker(int,optional): The number of workers on the trainer with type int64.
194

R
Roc 已提交
195 196
    Returns:
        new_gate_idx (Tensor): The gate_id sequence corresponding to the new input data after passing through prune.
197

R
Roc 已提交
198 199 200 201 202 203 204 205 206 207 208 209
    Examples:
        .. code-block:: python

            import paddle
            gate_idx = paddle.to_tensor([1, 3, 3, 3, 3, 2, 1, 1], dtype='int32')
            expert_count = paddle.to_tensor([0, 3, 1, 3, 0, 0, 0, 0], dtype='int32')
            n_worker = 1
            new_gate_id = paddle.distributed.utils.prune_gate_by_capacity(gate_idx, expert_count, n_expert, n_worker)
            print(new_gate_id)
            # Tensor(shape=[8], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
              [1, 3, 3, 3, -1, 2, 1, 1])
    """
210
    if in_dygraph_mode():
211 212 213
        return _legacy_C_ops.prune_gate_by_capacity(
            gate_idx, expert_count, "n_expert", n_expert, "n_worker", n_worker
        )
214
    elif _in_legacy_dygraph():
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
        return core.ops.prune_gate_by_capacity(
            gate_idx, expert_count, "n_expert", n_expert, "n_worker", n_worker
        )
    check_variable_and_dtype(
        gate_idx,
        'GateIdx',
        ['int32', 'int64'],
        'paddle.distributed.utils.prune_gate_by_capacity',
    )
    check_variable_and_dtype(
        expert_count,
        'ExpertCount',
        ['int32', 'int64'],
        'paddle.distributed.utils.prune_gate_by_capacity',
    )
R
Roc 已提交
230 231 232

    helper = LayerHelper('prune_gate_by_capacity', **locals())
    new_gate_idx = helper.create_variable_for_type_inference(
233 234 235 236 237 238 239 240
        dtype=gate_idx.dtype
    )
    helper.append_op(
        type='prune_gate_by_capacity',
        inputs={'GateIdx': gate_idx, "ExpertCount": expert_count},
        outputs={'NewGateIdx': new_gate_idx},
        attrs={"n_expert": n_expert, "n_worker": n_worker},
    )
R
Roc 已提交
241 242

    return new_gate_idx