scatter.py 3.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import paddle.distributed.communication.stream as stream
17
import paddle.fluid.framework as framework
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
from paddle.distributed.communication.group import _get_global_group


def scatter(tensor, tensor_list=None, src=0, group=None, sync_op=True):
    """

    Scatter a tensor to all participators. As shown below, one process is started with a GPU and the source of the scatter
    is GPU0. Through scatter operator, the data in GPU0 will be sent to all GPUs averagely.

    .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/scatter.png
        :width: 800
        :alt: scatter
        :align: center

    Args:
        tensor (Tensor): The output Tensor. Its data type
            should be float16, float32, float64, int32, int64, int8, uint8, bool or bfloat16.
        tensor_list (list|tuple): A list/tuple of Tensors to scatter. Every element in the list must be a Tensor whose data type
            should be float16, float32, float64, int32, int64, int8, uint8, bool or bfloat16. Default value is None.
        src (int): The source rank id. Default value is 0.
        group (Group, optional): The group instance return by new_group or None for global default group.
        sync_op (bool, optional): Whether this op is a sync op. The default value is True.

    Returns:
        None.

    Examples:
        .. code-block:: python

            # required: distributed
            import paddle
            import paddle.distributed as dist

            dist.init_parallel_env()
            if dist.get_rank() == 0:
                data1 = paddle.to_tensor([7, 8, 9])
                data2 = paddle.to_tensor([10, 11, 12])
                dist.scatter(data1, src=1)
            else:
                data1 = paddle.to_tensor([1, 2, 3])
                data2 = paddle.to_tensor([4, 5, 6])
                dist.scatter(data1, tensor_list=[data1, data2], src=1)
            print(data1, data2)
            # [1, 2, 3] [10, 11, 12] (2 GPUs, out for rank 0)
            # [4, 5, 6] [4, 5, 6] (2 GPUs, out for rank 1)
    """
    if not framework._in_legacy_dygraph():
        return stream.scatter(tensor, tensor_list, src, group, sync_op)

    # code below will be removed after we remove the old dygraph
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id
    gsrc = src if group is None else group.get_group_rank(src)
    rank = _get_global_group().rank if group is None else group.rank
    nranks = _get_global_group().nranks if group is None else group.nranks
    assert gsrc >= 0, "src rank out of group, need global rank"

    if rank != gsrc:
        tensor_list = []
        for _ in range(nranks):
            tensor_list.append(tensor)
    temp = paddle.concat(tensor_list, axis=0)

    use_calc_stream = sync_op
    return framework._legacy_C_ops.c_scatter(
        temp,
        tensor,
        'use_calc_stream',
        use_calc_stream,
        'ring_id',
        ring_id,
        'nranks',
        nranks,
        'root',
        gsrc,
    )