eager_op_test.py 94.5 KB
Newer Older
姜永久 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
#   Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import functools
import os
import random
import struct
import sys
import unittest
import warnings
from collections import defaultdict
from copy import copy

import numpy as np

import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
from paddle.fluid import unique_name
from paddle.fluid.backward import append_backward
from paddle.fluid.executor import Executor
from paddle.fluid.framework import (
    OpProtoHolder,
    Program,
    _current_expected_place,
    in_dygraph_mode,
)
from paddle.fluid.op import Operator

sys.path.append(os.path.abspath(os.path.dirname(__file__)))
42
from prim_op_test import OpTestUtils, PrimForwardChecker, PrimGradChecker
姜永久 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
from testsuite import append_input_output, append_loss_ops, create_op, set_input
from white_list import (
    check_shape_white_list,
    compile_vs_runtime_white_list,
    no_check_set_white_list,
    no_grad_set_white_list,
    op_accuracy_white_list,
    op_threshold_white_list,
)


def check_out_dtype(api_fn, in_specs, expect_dtypes, target_index=0, **configs):
    """
    Determines whether dtype of output tensor is as expected.

    Args:
        api_fn(callable):  paddle api function
        in_specs(list[tuple]): list of shape and dtype information for constructing input tensor of api_fn, such as [(shape, dtype), (shape, dtype)].
        expected_dtype(list[str]): expected dtype of output tensor.
        target_index(int): indicate which one from in_specs to infer the dtype of output.
        config(dict): other arguments of paddle api function

    Example:
        check_out_dtype(fluid.layers.pad_constant_like, [([2,3,2,3], 'float64'), ([1, 3, 1,3], )], ['float32', 'float64', 'int64'], target_index=1, pad_value=0.)

    """
    paddle.enable_static()
    for i, expect_dtype in enumerate(expect_dtypes):
        with paddle.static.program_guard(paddle.static.Program()):
            input_t = []
            for index, spec in enumerate(in_specs):
                if len(spec) == 1:
                    shape = spec[0]
                    dtype = expect_dtype if target_index == index else 'float32'
                elif len(spec) == 2:
                    shape, dtype = spec
                else:
                    raise ValueError(
                        "Value of in_specs[{}] should contains two elements: [shape, dtype]".format(
                            index
                        )
                    )
                input_t.append(
                    paddle.static.data(
                        name='data_%s' % index, shape=shape, dtype=dtype
                    )
                )

            out = api_fn(*input_t, **configs)
            out_dtype = fluid.data_feeder.convert_dtype(out.dtype)

            if out_dtype != expect_dtype:
                raise ValueError(
                    "Expected out.dtype is {}, but got {} from {}.".format(
                        expect_dtype, out_dtype, api_fn.__name__
                    )
                )


def _set_use_system_allocator(value=None):
    USE_SYSTEM_ALLOCATOR_FLAG = "FLAGS_use_system_allocator"
    old_value = core.globals()[USE_SYSTEM_ALLOCATOR_FLAG]
    value = old_value if value is None else value
    core.globals()[USE_SYSTEM_ALLOCATOR_FLAG] = value
    return old_value


def randomize_probability(batch_size, class_num, dtype='float32'):
    prob = np.random.uniform(0.1, 1.0, size=(batch_size, class_num)).astype(
        dtype
    )
    prob_sum = prob.sum(axis=1)
    for i in range(len(prob)):
        prob[i] /= prob_sum[i]
    return prob


def get_numeric_gradient(
    place,
    scope,
    op,
    inputs,
    input_to_check,
    output_names,
    delta=0.005,
    in_place=False,
):
    # FIXME: change this method by compile time concepts
    set_input(scope, op, inputs, place)

    def product(dim):
        return functools.reduce(lambda a, b: a * b, dim, 1)

    tensor_to_check = scope.find_var(input_to_check).get_tensor()
    tensor_size = product(tensor_to_check.shape())
    tensor_to_check_dtype = tensor_to_check._dtype()
    if tensor_to_check_dtype == core.VarDesc.VarType.FP32:
        tensor_to_check_dtype = np.float32
    elif tensor_to_check_dtype == core.VarDesc.VarType.FP64:
        tensor_to_check_dtype = np.float64
    elif tensor_to_check_dtype == core.VarDesc.VarType.FP16:
        tensor_to_check_dtype = np.float16
        # set delta as np.float16, will automatic convert to float32, float64
        delta = np.array(delta).astype(np.float16)
    elif tensor_to_check_dtype == core.VarDesc.VarType.BF16:
        tensor_to_check_dtype = np.float32
    elif tensor_to_check_dtype == core.VarDesc.VarType.COMPLEX64:
        tensor_to_check_dtype = np.complex64
    elif tensor_to_check_dtype == core.VarDesc.VarType.COMPLEX128:
        tensor_to_check_dtype = np.complex128
    else:
        raise ValueError(
            "Not supported data type "
            + str(tensor_to_check_dtype)
            + ", tensor name : "
            + str(input_to_check)
        )

    def get_output():
        sum = []
        op.run(scope, place)
        for output_name in output_names:
            output_numpy = np.array(scope.find_var(output_name).get_tensor())
            # numpy.dtype does not have bfloat16, thus we use numpy.uint16 to
            # store bfloat16 data, and need to be converted to float to check
            # the floating precision.
            if tensor_to_check._dtype() == core.VarDesc.VarType.BF16:
                output_numpy = convert_uint16_to_float(output_numpy)
            sum.append(output_numpy.astype(tensor_to_check_dtype).mean())
        return tensor_to_check_dtype(np.array(sum).sum() / len(output_names))

    gradient_flat = np.zeros(shape=(tensor_size,), dtype=tensor_to_check_dtype)

    def __get_elem__(tensor, i):
        if tensor_to_check_dtype == np.float16:
            numpy_tensor = np.array(tensor).astype(np.float16)
            numpy_tensor = numpy_tensor.flatten()
            return numpy_tensor[i]
        elif tensor_to_check._dtype() == core.VarDesc.VarType.BF16:
            numpy_tensor = np.array(tensor).astype(np.uint16)
            numpy_tensor = numpy_tensor.flatten()
            return struct.unpack(
                '<f',
                struct.pack('<I', np.uint32(numpy_tensor[i]) << np.uint32(16)),
            )[0]
        elif tensor_to_check_dtype == np.float32:
            return tensor._get_float_element(i)
        elif tensor_to_check_dtype == np.float64:
            return tensor._get_double_element(i)
        else:
            raise TypeError(
                "Unsupported test data type %s." % tensor_to_check_dtype
            )

    def __set_elem__(tensor, i, e):
        if tensor_to_check_dtype == np.float16:
            numpy_tensor = np.array(tensor).astype(np.float16)
            shape = numpy_tensor.shape
            numpy_tensor = numpy_tensor.flatten()
            numpy_tensor[i] = e
            numpy_tensor = numpy_tensor.reshape(shape)
            tensor.set(numpy_tensor, place)
        elif tensor_to_check._dtype() == core.VarDesc.VarType.BF16:
            numpy_tensor = np.array(tensor).astype(np.uint16)
            shape = numpy_tensor.shape
            numpy_tensor = numpy_tensor.flatten()
            numpy_tensor[i] = np.uint16(copy_bits_from_float_to_uint16(e))
            numpy_tensor = numpy_tensor.reshape(shape)
            tensor.set(numpy_tensor, place)
        elif tensor_to_check_dtype == np.float32:
            tensor._set_float_element(i, e)
        elif tensor_to_check_dtype == np.float64:
            tensor._set_double_element(i, e)
        else:
            raise TypeError(
                "Unsupported test data type %s." % tensor_to_check_dtype
            )

    # we only compute gradient of one element each time.
    # we use a for loop to compute the gradient of every element.
    for i in range(tensor_size):
        if in_place:
            set_input(scope, op, inputs, place)

        # get one input element throw it's index i.
        origin = __get_elem__(tensor_to_check, i)
        # add delta to it, run op and then get the sum of the result tensor.
        x_pos = origin + delta
        __set_elem__(tensor_to_check, i, x_pos)
        y_pos = get_output()

        if in_place:
            set_input(scope, op, inputs, place)

        x_neg = origin - delta
        __set_elem__(tensor_to_check, i, x_neg)
        y_neg = get_output()

        __set_elem__(tensor_to_check, i, origin)
        gradient_flat[i] = (y_pos - y_neg) / delta / 2

    return gradient_flat.reshape(tensor_to_check.shape())


def skip_check_grad_ci(reason=None):
    """Decorator to skip check_grad CI.

    Check_grad is required for Op test cases. However, there are some special
    cases that do not need to do check_grad. This decorator is used to skip the
    check_grad of the above cases.

    Note: the execution of unit test will not be skipped. It just avoids check_grad
    checking in tearDownClass method by setting a `no_need_check_grad` flag.

    Example:
        @skip_check_grad_ci(reason="For inference, check_grad is not required.")
        class TestInference(OpTest):
    """
    if not isinstance(reason, str):
        raise AssertionError("The reason for skipping check_grad is required.")

    def wrapper(cls):
        cls.no_need_check_grad = True
        return cls

    return wrapper


def skip_check_inplace_ci(reason=None):
    if not isinstance(reason, str):
        raise AssertionError(
            "The reason for skipping check_inplace is required."
        )

    def wrapper(cls):
        cls.no_need_check_inplace = True
        return cls

    return wrapper


def copy_bits_from_float_to_uint16(f):
    return struct.unpack('<I', struct.pack('<f', f))[0] >> 16


def convert_float_to_uint16(float_list, data_format="NCHW"):
    if data_format == "NHWC":
        float_list = np.transpose(float_list, [0, 3, 1, 2])

    new_output = []
    for x in np.nditer(float_list):
        new_output.append(np.uint16(copy_bits_from_float_to_uint16(x)))
    new_output = np.reshape(new_output, float_list.shape).view(np.uint16)

    if data_format == "NHWC":
        new_output = np.transpose(new_output, [0, 2, 3, 1])
    return new_output


def convert_uint16_to_float(in_list):
    in_list = np.asarray(in_list)
    out = np.vectorize(
        lambda x: struct.unpack(
            '<f', struct.pack('<I', np.uint32(x) << np.uint32(16))
        )[0],
        otypes=[np.float32],
    )(in_list.flat)
    return np.reshape(out, in_list.shape)


class OpTest(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        '''Fix random seeds to remove randomness from tests'''
        cls._np_rand_state = np.random.get_state()
        cls._py_rand_state = random.getstate()
        cls.call_once = False
        cls.dtype = None
        cls.outputs = {}
        cls.input_shape_is_large = True
323
        cls.check_prim = False
姜永久 已提交
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403

        np.random.seed(123)
        random.seed(124)

        if paddle.is_compiled_with_npu():
            cls._use_system_allocator = _set_use_system_allocator(False)
        else:
            cls._use_system_allocator = _set_use_system_allocator(True)

    @classmethod
    def tearDownClass(cls):
        """Restore random seeds"""
        np.random.set_state(cls._np_rand_state)
        random.setstate(cls._py_rand_state)

        _set_use_system_allocator(cls._use_system_allocator)

        def is_empty_grad_op(op_type):
            all_op_kernels = core._get_all_register_op_kernels()
            grad_op = op_type + '_grad'
            if grad_op in all_op_kernels.keys():
                if is_mkldnn_op_test():
                    grad_op_kernels = all_op_kernels[grad_op]
                    for grad_op_kernel in grad_op_kernels:
                        if 'MKLDNN' in grad_op_kernel:
                            return False
                else:
                    return False
            return True

        def is_xpu_op_test():
            return hasattr(cls, "use_xpu") and cls.use_xpu

        def is_mkldnn_op_test():
            return hasattr(cls, "use_mkldnn") and cls.use_mkldnn

        def is_rocm_op_test():
            return core.is_compiled_with_rocm()

        def is_npu_op_test():
            return hasattr(cls, "use_npu") and cls.use_npu

        def is_mlu_op_test():
            return hasattr(cls, "use_mlu") and cls.use_mlu

        def is_custom_device_op_test():
            return hasattr(cls, "use_custom_device") and cls.use_custom_device

        if not hasattr(cls, "op_type"):
            raise AssertionError(
                "This test do not have op_type in class attrs, "
                "please set self.__class__.op_type=the_real_op_type manually."
            )

        # case in NO_FP64_CHECK_GRAD_CASES and op in NO_FP64_CHECK_GRAD_OP_LIST should be fixed
        if not hasattr(cls, "no_need_check_grad") and not is_empty_grad_op(
            cls.op_type
        ):
            if cls.dtype is None or (
                cls.dtype == np.float16
                and cls.op_type
                not in op_accuracy_white_list.NO_FP16_CHECK_GRAD_OP_LIST
                and not hasattr(cls, "exist_check_grad")
            ):
                raise AssertionError(
                    "This test of %s op needs check_grad." % cls.op_type
                )

            # check for op test with fp64 precision, but not check mkldnn op test for now
            if (
                cls.dtype in [np.float32, np.float64]
                and cls.op_type
                not in op_accuracy_white_list.NO_FP64_CHECK_GRAD_OP_LIST
                and not hasattr(cls, 'exist_fp64_check_grad')
                and not is_xpu_op_test()
                and not is_mkldnn_op_test()
                and not is_rocm_op_test()
                and not is_npu_op_test()
                and not is_mlu_op_test()
                and not is_custom_device_op_test()
404
                and not cls.check_prim
姜永久 已提交
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
            ):
                raise AssertionError(
                    "This test of %s op needs check_grad with fp64 precision."
                    % cls.op_type
                )

            if (
                not cls.input_shape_is_large
                and cls.op_type
                not in check_shape_white_list.NEED_TO_FIX_OP_LIST
            ):
                raise AssertionError(
                    "Input's shape should be large than or equal to 100 for "
                    + cls.op_type
                    + " Op."
                )

    def try_call_once(self, data_type):
        if not self.call_once:
            self.call_once = True
            self.dtype = data_type

    def is_bfloat16_op(self):
        # self.dtype is the dtype of inputs, and is set in infer_dtype_from_inputs_outputs.
        # Make sure this function is called after calling infer_dtype_from_inputs_outputs.
        return (
            self.dtype == np.uint16
            or (
                hasattr(self, 'output_dtype') and self.output_dtype == np.uint16
            )
            or (
                hasattr(self, 'mkldnn_data_type')
                and getattr(self, 'mkldnn_data_type') == "bfloat16"
            )
            or (
                hasattr(self, 'attrs')
                and 'mkldnn_data_type' in self.attrs
                and self.attrs['mkldnn_data_type'] == 'bfloat16'
            )
        )

    def is_mkldnn_op(self):
        return (hasattr(self, "use_mkldnn") and self.use_mkldnn) or (
            hasattr(self, "attrs")
            and "use_mkldnn" in self.attrs
            and self.attrs["use_mkldnn"]
        )

    def is_xpu_op(self):
        return (hasattr(self, "use_xpu") and self.use_xpu) or (
            hasattr(self, "attrs")
            and "use_xpu" in self.attrs
            and self.attrs["use_xpu"]
        )

    # set the self.output_dtype .
    def infer_dtype_from_inputs_outputs(self, inputs, outputs):
        def is_np_data(input):
            return isinstance(input, (np.ndarray, np.generic))

        def infer_dtype(numpy_dict, dtype_set):
            assert isinstance(
                numpy_dict, dict
            ), "self.inputs, self.outputs must be numpy_dict"
            # the inputs are as follows:
            # case 1: inputs = {'X': x}
            # case 2: inputs = {'X': (x, x_lod)}
            # case 3: inputs = {"X": [("x0", x0), ("x1", x1), ("x2", x2)]}
            # case 4: inputs = {'X': [("x1", (x1, [x1_lod1])), ("x2", (x2, [x2_.lod2]))]}
            # TODO(juncaipeng) infer dtype from inputs maybe obtain wrong type.
            for _, var_value in numpy_dict.items():
                if is_np_data(var_value):  # case 1
                    dtype_set.add(var_value.dtype)
                elif isinstance(var_value, (list, tuple)):  # case 2, 3, 4
                    for sub_val_value in var_value:
                        if is_np_data(sub_val_value):  # case 2
                            dtype_set.add(sub_val_value.dtype)
                        elif len(sub_val_value) > 1 and is_np_data(
                            sub_val_value[1]
                        ):  # case 3
                            dtype_set.add(sub_val_value[1].dtype)
                        elif (
                            len(sub_val_value) > 1
                            and isinstance(sub_val_value[1], (list, tuple))
                            and is_np_data(sub_val_value[1][0])
                        ):  # case 4
                            dtype_set.add(sub_val_value[1][0].dtype)

        # infer dtype from inputs, and dtype means the precision of the test
        # collect dtype of all inputs
        input_dtype_set = set()
        infer_dtype(inputs, input_dtype_set)
        dtype_list = [
            np.dtype(np.float64),
            np.dtype(np.float32),
            np.dtype(np.float16),
            np.dtype(np.int64),
            np.dtype(np.int32),
            np.dtype(np.uint16),
            np.dtype(np.int16),
            np.dtype(np.int8),
            np.dtype(np.uint8),
            np.dtype(np.bool_),
        ]
        # check the dtype in dtype_list in order, select the first dtype that in dtype_set
        for dtype in dtype_list:
            if dtype in input_dtype_set:
                self.dtype = dtype
                break
        # save input dtype in class attr
        self.__class__.dtype = self.dtype

        # infer dtype of outputs
        output_dtype_set = set()
        infer_dtype(outputs, output_dtype_set)
        for dtype in dtype_list:
            if dtype in output_dtype_set:
                self.output_dtype = dtype
                break

    def feed_var(self, input_vars, place):
        feed_map = {}
        for var_name in input_vars:
            if isinstance(input_vars[var_name], list):
                for name, np_value in self.inputs[var_name]:
                    tensor = core.LoDTensor()
                    if isinstance(np_value, tuple):
                        tensor.set(np_value[0], place)
                        tensor.set_recursive_sequence_lengths(np_value[1])
                    else:
                        tensor.set(np_value, place)
                    feed_map[name] = tensor
            else:
                tensor = core.LoDTensor()
                if isinstance(self.inputs[var_name], tuple):
                    tensor.set(self.inputs[var_name][0], place)
                    tensor.set_recursive_sequence_lengths(
                        self.inputs[var_name][1]
                    )
                else:
                    tensor.set(self.inputs[var_name], place)
                feed_map[var_name] = tensor

        return feed_map

    def _append_ops(self, block):
        self.__class__.op_type = (
            self.op_type
        )  # for ci check, please not delete it for now
        if self.is_mkldnn_op():
            self.__class__.use_mkldnn = True

        if self.is_xpu_op():
            self.__class__.use_xpu = True

        op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)
        "infer datatype from inputs and outputs for this test case"
        if self.is_bfloat16_op():
            self.dtype = np.uint16
            self.__class__.dtype = self.dtype
            self.output_dtype = np.uint16
        else:
            self.infer_dtype_from_inputs_outputs(self.inputs, self.outputs)
        inputs = append_input_output(
            block, op_proto, self.inputs, True, self.dtype
        )
        outputs = append_input_output(
            block, op_proto, self.outputs, False, self.dtype
        )

        if hasattr(self, "cache_name_list"):
            for name in self.cache_name_list:
                inputs[name] = block.create_var(
                    name=name,
                    persistable=True,
                    type=core.VarDesc.VarType.RAW,
                    stop_gradient=True,
                )
        op = block.append_op(
            type=self.op_type,
            inputs=inputs,
            outputs=outputs,
            attrs=copy(self.attrs) if hasattr(self, "attrs") else dict(),
        )
        # infer variable type and infer shape in compile-time
        op.desc.infer_var_type(block.desc)
        op.desc.infer_shape(block.desc)

        return op

    def _get_io_vars(self, block, numpy_inputs):
        inputs = {}
        for name, value in numpy_inputs.items():
            if isinstance(value, list):
                var_list = [
                    block.var(sub_name) for sub_name, sub_value in value
                ]
                inputs[name] = var_list
            else:
                inputs[name] = block.var(name)
        return inputs

    def _get_inputs(self, block):
        return self._get_io_vars(block, self.inputs)

    def _get_outputs(self, block):
        return self._get_io_vars(block, self.outputs)

    def calc_output(self, place):
        outs, _ = self._calc_output(place)
        return outs

    def _create_var_from_numpy(self, value):
        if isinstance(value, tuple):
            data = value[0]
            lod = value[1]
            v = fluid.dygraph.base.to_variable(value=data)
            v.value().get_tensor().set_recursive_sequence_lengths(lod)
            return v
        else:
            return fluid.dygraph.base.to_variable(value)

    def get_sequence_batch_size_1_input(self, lod=None, shape=None):
        """Get LoD input data whose batch size is 1.
        All sequence related OP unittests should call this function to contain the case of batch size = 1.
        Args:
            lod (list[list of int], optional): Length-based LoD, length of lod[0] should be 1. Default: [[13]].
            shape (list, optional): Shape of input, shape[0] should be equals to lod[0][0]. Default: [13, 23].
        Returns:
            tuple (ndarray, lod) : LoD input data whose batch size is 1.
        """
        if lod is None:
            lod = [[13]]
        if shape is None:
            shape = [13, 23]
        assert len(lod[0]) == 1
        assert lod[0][0] == shape[0]
        x = np.random.uniform(0.1, 1, shape).astype('float32')
        return (x, lod)

    def lod_has_single_zero(self, lod):
        for i in range(len(lod) - 2):
            if lod[i] != 0 and lod[i + 1] == 0 and lod[i + 2] != 0:
                return True
        return False

    def lod_has_continuous_zero(self, lod):
        for i in range(len(lod) - 3):
            if (
                lod[i] != 0
                and lod[i + 1] == 0
                and lod[i + 2] == 0
                and lod[i + 3] != 0
            ):
                return True
        return False

    def get_sequence_instance_size_0_input(self, lod=None, shape=None):
        """Get LoD input data whose instance size is 0.
        All sequence related OP unittests should call this function to contain the case of instance size is 0.
        Args:
            lod (list[list of int], optional): Length-based LoD, lod[0]'s size must at least eight, lod[0] must at least two zeros at the beginning and at least two zeros at the end, the middle position of lod[0] contains a single zero and multiple zero. Default: [[0, 0, 4, 0, 3, 0, 0, 5, 0, 0]].
            shape (list, optional): Shape of input, shape[0] should be equals to lod[0][0]. Default: [13, 23].
        Returns:
            tuple (ndarray, lod): LoD input data whose instance size is 0.
        """
        if lod is None:
            lod = [[0, 0, 4, 0, 3, 0, 0, 5, 0, 0]]
        if shape is None:
            shape = [12, 10]
        assert len(lod[0]) >= 8
        assert (
            lod[0][0] == 0
            and lod[0][1] == 0
            and lod[0][-1] == 0
            and lod[0][-2] == 0
        )
        assert self.lod_has_single_zero(lod[0]) is True
        assert self.lod_has_continuous_zero(lod[0]) is True
        assert sum(lod[0]) == shape[0]

        x = np.random.uniform(0.1, 1, shape).astype('float32')
        return (x, lod)

    def append_input_output_for_dygraph(
        self, op_proto, np_list, is_input, if_return_inputs_grad_dict, block
    ):
        def create_var(np_value, name, is_input, if_return_inputs_grad_dict):
            np_value_temp = np_value
            has_lod = False
            lod_temp = None
            if isinstance(np_value, tuple):
                np_value_temp = np_value[0]
                has_lod = True
                lod_temp = np_value[1]

            if is_input:
                v = self._create_var_from_numpy(np_value_temp)

                if if_return_inputs_grad_dict:
                    v.stop_gradient = False
                    if hasattr(v, "retain_grads"):
                        v.retain_grads()

                if has_lod:
                    v.value().get_tensor().set_recursive_sequence_lengths(
                        lod_temp
                    )
            else:
                v = block.create_var(
                    name=name,
                    dtype=np_value_temp.dtype,
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    persistable=False,
                    stop_gradient=False,
                )
            return v

        # prepare variable for input or output
        var_dict = defaultdict(list)
        if if_return_inputs_grad_dict:
            inputs_grad_dict = defaultdict()
        proto_list = op_proto.inputs if is_input else op_proto.outputs
        for var_proto in proto_list:
            name = var_proto.name
            if (name not in np_list) and var_proto.dispensable:
                continue
            if name not in np_list:
                assert var_proto.intermediate, "{} not found".format(name)
                v = block.create_var(
                    dtype='float32', type=core.VarDesc.VarType.LOD_TENSOR
                )
                var_dict[name].append(v)
                if if_return_inputs_grad_dict:
                    inputs_grad_dict[name] = v
                continue
            if var_proto.duplicable:
                assert isinstance(
                    np_list[name], list
                ), "Duplicable {} should be set as list".format(name)
                var_list = []
                slot_name = name
                for (name, np_value) in np_list[name]:
                    v = create_var(
                        np_value, name, is_input, if_return_inputs_grad_dict
                    )
                    var_list.append(v)
                    if if_return_inputs_grad_dict:
                        inputs_grad_dict[name] = v
                var_dict[slot_name] = var_list
            else:
                nplist_value_temp = None
                name_temp = None
                if isinstance(np_list[name], list):
                    nplist_value_temp = np_list[name][0]
                    name_temp = name
                else:
                    nplist_value_temp = np_list[name]
                    name_temp = unique_name.generate("%s_out" % (name))
                v = create_var(
                    nplist_value_temp,
                    name_temp,
                    is_input,
                    if_return_inputs_grad_dict,
                )
                var_dict[name].append(v)
                if if_return_inputs_grad_dict:
                    inputs_grad_dict[name] = v

        if if_return_inputs_grad_dict:
            return var_dict, inputs_grad_dict
        else:
            return var_dict

    def _check_api_outs_by_dygraph_outs(self, api_outs, dygraph_outs, place):
        """for quick verify, here we take a simplest strategy:
        1. we only check variable in api_outs.
        2. we simply check the numpy (tensor) .
        3. we set atol and rtol as 1e-5, because they are unrelated to dtype.
        """
        for name in api_outs:
            np_api = np.array(api_outs[name])
            np_dyg = np.array(dygraph_outs[name])
            np.testing.assert_allclose(
                np_api,
                np_dyg,
                rtol=1e-05,
                equal_nan=False,
                err_msg='Output ('
                + name
                + ') has diff at '
                + str(place)
                + '\nExpect '
                + str(np_dyg)
                + '\n'
                + 'But Got'
                + str(np_api)
                + ' in class '
                + self.__class__.__name__,
            )

    def _calc_python_api_output(self, place, egr_inps=None, egr_oups=None):
        """set egr_inps and egr_oups = None if you want to create it by yourself."""

        def construct_output_dict_by_kernel_sig(ret_tuple, output_sig):
            if hasattr(self, "python_out_sig"):
                output_sig = self.python_out_sig
            if not isinstance(ret_tuple, (tuple, list)):
                ret_tuple = [ret_tuple]
            if len(output_sig) == len(ret_tuple):
                # [assumption]: we assume {"Out": [Tensor]}
                return {a: [b] for a, b in zip(output_sig, ret_tuple)}
            else:
                # [assumption]: return multi-Tensor in a single output. such as paddle.split()
                assert (
                    len(output_sig) == 1
                ), "Don't support multi-output with multi-tensor output. (May be you can use set `python_out_sig`, see `test_squeeze2_op` as a example.)"
                return {output_sig[0]: ret_tuple}

        def cal_python_api(python_api, args, kernel_sig):
            inputs_sig, attrs_sig, outputs_sig = kernel_sig
826 827 828
            args = OpTestUtils.assumption_assert_and_transform(
                args, len(inputs_sig)
            )
姜永久 已提交
829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
            ret_tuple = python_api(*args)
            return construct_output_dict_by_kernel_sig(ret_tuple, outputs_sig)

        with fluid.dygraph.base.guard(place=place):
            block = fluid.default_main_program().global_block()
            op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)
            # prepare input variable
            dygraph_tensor_inputs = (
                egr_inps
                if egr_inps
                else self.append_input_output_for_dygraph(
                    op_proto, self.inputs, True, False, block
                )
            )
            # prepare output variable
            dygraph_tensor_outputs = (
                egr_oups
                if egr_oups
                else self.append_input_output_for_dygraph(
                    op_proto, self.outputs, False, False, block
                )
            )

            # prepare attributes
            attrs_outputs = {}
            if hasattr(self, "attrs"):
                for attrs_name in self.attrs:
                    if self.attrs[attrs_name] is not None:
                        attrs_outputs[attrs_name] = self.attrs[attrs_name]

859 860 861 862 863
            kernel_sig = OpTestUtils._get_kernel_signature(
                self.op_type,
                dygraph_tensor_inputs,
                dygraph_tensor_outputs,
                attrs_outputs,
姜永久 已提交
864 865 866 867 868 869 870
            )
            if not kernel_sig:
                return None
            assert hasattr(self, "python_api"), (
                "Detect there is KernelSignature for `%s` op, please set the `self.python_api` if you set check_dygraph = True"
                % self.op_type
            )
871
            args = OpTestUtils.prepare_python_api_arguments(
姜永久 已提交
872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
                self.python_api,
                dygraph_tensor_inputs,
                attrs_outputs,
                kernel_sig,
            )
            """ we directly return the cal_python_api value because the value is already tensor.
            """
            return cal_python_api(self.python_api, args, kernel_sig)

    def _calc_dygraph_output(self, place, parallel=False, no_check_set=None):
        self.__class__.op_type = (
            self.op_type
        )  # for ci check, please not delete it for now
        with fluid.dygraph.base.guard(place=place):
            block = fluid.default_main_program().global_block()

            op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)

            # prepare input variable
            inputs = self.append_input_output_for_dygraph(
                op_proto, self.inputs, True, False, block
            )
            # prepare output variable
            outputs = self.append_input_output_for_dygraph(
                op_proto, self.outputs, False, False, block
            )

            # prepare attributes
            attrs_outputs = {}
            if hasattr(self, "attrs"):
                for attrs_name in self.attrs:
                    if self.attrs[attrs_name] is not None:
                        attrs_outputs[attrs_name] = self.attrs[attrs_name]

            block.append_op(
                type=self.op_type,
                inputs=inputs,
                outputs=outputs,
                attrs=attrs_outputs if hasattr(self, "attrs") else None,
            )
            return outputs

    def _calc_output(
        self,
        place,
        parallel=False,
        no_check_set=None,
        loss=None,
        enable_inplace=None,
        for_inplace_test=None,
    ):
923
        with paddle.static.program_guard(paddle.static.Program()):
924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967
            program = Program()
            block = program.global_block()
            op = self._append_ops(block)

            inputs = self._get_inputs(block)
            outputs = self._get_outputs(block)
            feed_map = self.feed_var(inputs, place)

            if for_inplace_test:
                # Some variables' tensors hold no buffer (tensor's _holder is NULL), like XShape in reshape2 op,
                # and the shapes of those variables contain 0 (eg. Xshape.shape = [0, 2, 5]).
                # Set persistable for those variables in order to get them from global_scope for inplace grad test directly other than feed them,
                # since feed op calls check_memory_size() which fails when tensor's holder_ is NULL.
                for out_name in op.output_arg_names:
                    var = block.var(out_name)
                    if 0 in var.shape:
                        var.persistable = True
            original_program = program
            if parallel:
                use_cuda = False
                if isinstance(place, fluid.CUDAPlace):
                    use_cuda = True
                compiled_prog = fluid.CompiledProgram(
                    program
                ).with_data_parallel(
                    loss_name=loss.name if loss else None, places=place
                )
                program = compiled_prog
            fetch_list = getattr(self, "fetch_list", [])
            # if the fetch_list is customized by user, we use it directly.
            # if not, fill the fetch_list by the user configured outputs in test.
            if len(fetch_list) == 0:
                for var_name, var in outputs.items():
                    if no_check_set is not None and var_name in no_check_set:
                        continue
                    if isinstance(var, list):
                        for v in var:
                            fetch_list.append(v.name)
                    else:
                        fetch_list.append(var.name)
            # if the fetch_list still empty, fill the fetch_list by the operator output.
            if len(fetch_list) == 0:
                for out_name, out_dup in Operator.get_op_outputs(self.op_type):
                    fetch_list.append(str(out_name))
姜永久 已提交
968

969 970 971
            if enable_inplace is not None:
                build_strategy = fluid.BuildStrategy()
                build_strategy.enable_inplace = enable_inplace
姜永久 已提交
972

973 974 975 976 977 978 979 980 981 982 983 984 985
                compiled_prog = fluid.CompiledProgram(
                    program
                ).with_data_parallel(
                    build_strategy=build_strategy, places=place
                )
                program = compiled_prog

            executor = Executor(place)
            outs = executor.run(
                program,
                feed=feed_map,
                fetch_list=fetch_list,
                return_numpy=False,
姜永久 已提交
986
            )
987 988
            self.op = op
            self.program = original_program
姜永久 已提交
989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
        if for_inplace_test:
            return outs, fetch_list, feed_map, original_program, op.desc
        else:
            return outs, fetch_list

    def _compare_expect_and_actual_outputs(
        self, place, fetch_list, expect_outs, actual_outs, inplace_atol=None
    ):
        """Compare expect outs and actual outs of an tested op.

        Args:
            place (CPUPlace | CUDAPlace): The place where the op runs.
            fetch_list (list): The outputs of tested op.
            expect_outs (list): The expect outs of tested op.
            actual_outs (list): The actual outs of tested op.
            inplace_atol (float): The tolerable error, only set when tested op doesn't ensure computational consistency, like group_norm op.

        Returns:
            None.
        """
        # compare expect_outs and actual_outs
        for i, name in enumerate(fetch_list):
            # Note(zhiqiu): inplace_atol should be only set when op doesn't ensure
            # computational consistency.
            # When inplace_atol is not None, the inplace check uses numpy.allclose
            # to check inplace result instead of numpy.array_equal.
            expect_out = np.array(expect_outs[i])
            actual_out = np.array(actual_outs[i])
            if inplace_atol is not None:
                np.testing.assert_allclose(
                    expect_out,
                    actual_out,
                    rtol=1e-05,
                    atol=inplace_atol,
                    err_msg='Output ('
                    + name
                    + ') has diff at '
                    + str(place)
                    + ' when using and not using inplace'
                    + '\nExpect '
                    + str(expect_out)
                    + '\n'
                    + 'But Got'
                    + str(actual_out)
                    + ' in class '
                    + self.__class__.__name__,
                )
            else:
                np.testing.assert_array_equal(
                    expect_out,
                    actual_out,
                    err_msg='Output ('
                    + name
                    + ') has diff at '
                    + str(place)
                    + ' when using and not using inplace'
                    + '\nExpect '
                    + str(expect_out)
                    + '\n'
                    + 'But Got'
                    + str(actual_out)
                    + ' in class '
                    + self.__class__.__name__
                    + '\n',
                )

    def _construct_grad_program_from_forward(
        self, fwd_program, grad_op_desc, op_grad_to_var
    ):
        """Generate grad_program which contains the grad_op.

        Args:
            fwd_program (tuple): The program that contains grad_op_desc's corresponding forward op.
            grad_op_desc (OpDesc): The OpDesc of grad op.
            op_grad_to_var (dict): The relation of variables in grad op and its forward op.

        Returns:
            grad_program (program): The program which contains the grad_op.
        """
        grad_program = Program()
        grad_block = grad_program.global_block()
        new_op_desc = grad_block.desc.append_op()
        new_op_desc.copy_from(grad_op_desc)
        grad_program._sync_with_cpp()

        # Create grad vars based on fwd vars (shape and dtype)
        for arg in (
            grad_op_desc.input_arg_names() + grad_op_desc.output_arg_names()
        ):
            fwd_var_name = op_grad_to_var.get(arg, None)
            if fwd_var_name is None:
                fwd_var_name = arg
            fwd_var = fwd_program.global_block().vars.get(fwd_var_name)
            assert fwd_var is not None, "{} cannot be found".format(
                fwd_var_name
            )
            grad_var = grad_block.create_var(
                name=arg,
                dtype=fwd_var.dtype,
                shape=fwd_var.shape,
                type=fwd_var.type,
                persistable=False,
            )

            # Some variables' tensors hold no buffer (tensor's _holder is NULL), like XShape in reshape2 op,
            # and the shapes of those variables contain 0 (eg. Xshape.shape = [0, 2, 5]).
            # Set persistable for those variables in order to get them from global_scope for inplace grad test directly other than feed them,
            # since feed op calls check_memory_size() which fails when tensor's holder_ is NULL.
            if 0 in grad_var.shape:
                grad_var.persistable = True
        grad_program._sync_with_cpp()
        return grad_program

    def _construct_grad_feed_map_from_forward(
        self, place, fwd_res, grad_op_desc, op_grad_to_var
    ):
        """Generate grad_feed_map for grad_program.

        since we don`t really check gradient accuracy, but check the consistency when using and not using inplace,
        we use fwd outs (also inputs sometimes) to construct grad inputs.

        Args:
            place (CPUPlace | CUDAPlace): The place where the op runs.
            fwd_res (tuple): The outputs of its forward op, in the same form as returns of _calc_outputs() when for_inplace_test is True.
                i.e., tuple(fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc)
            grad_op_desc (OpDesc): The OpDesc of grad op.
            op_grad_to_var (dict): The relation of variables in grad op and its fwd_op.

        Returns:
            grad_feed_map (dict): The feed_map of grad_op.
        """
        (
            fwd_outs,
            fwd_fetch_list,
            fwd_feed_map,
            fwd_program,
            fwd_op_desc,
        ) = fwd_res
        p = core.Place()
        p.set_place(place)
        grad_feed_map = {}
        for arg in grad_op_desc.input_arg_names():
            if arg in fwd_feed_map.keys():
                grad_feed_map[arg] = fwd_feed_map[arg]._copy(p)
            else:
                fwd_var_name = op_grad_to_var.get(arg, None)
                if fwd_var_name is None:
                    fwd_var_name = arg

                for i, out_name in enumerate(fwd_fetch_list):
                    if out_name == fwd_var_name:
                        # don't feed variables whose tensors hold no buffer (shape contains 0 like shape = [0,2,5] and holder_ is NULL), like XShape in reshape2 op.
                        # get them from global_scope directly since we have set them persistable in fwd execution
                        if 0 in fwd_program.global_block().var(out_name).shape:
                            continue
                        else:
                            grad_feed_map[arg] = fwd_outs[i]._copy(p)

        return grad_feed_map

    def _get_need_run_ops(self, op_desc, fwd_op_desc=None):
        """Postorder traversal of the 'grad' tree to get all ops that need to run during inplace test.
        An op needs to run druing inplace check if,
        (1) it has infer_inplace,
        (2) it has infer_inplace in its grad descendants. (since we need its outputs as to construct its grad's inputs)

        Args:
            op_desc (OpDesc): The op_desc of current op.
            fwd_op_desc (OpDesc): The op_desc of current op's forward op, None if current op has no forward op.
                Eg. relu's fwd_op is None, relu_grad's fwd_op is relu, relu_grad_grad's fwd_op is relu_grad, etc.

        Returns:
            need_run_ops (list[(op_desc, fwd_op_desc)]): The ops that need to run during inplace test.
        """
        need_run_ops = []
        visited_ops = []

        def _dfs_grad_op(op_desc, fwd_op_desc=None):
            visited_ops.append(op_desc.type())
            has_infer_inplace = fluid.core.has_infer_inplace(op_desc.type())
            has_grad_op_maker = fluid.core.has_grad_op_maker(op_desc.type())
            has_infer_inplace_in_grad_descendants = False
            if not has_grad_op_maker:
                has_infer_inplace_in_descendants = False
            else:
                # get grad_op_desc
                grad_op_desc_list, op_grad_to_var = core.get_grad_op_desc(
                    op_desc, set(), []
                )
                if not grad_op_desc_list:
                    has_infer_inplace_in_grad_descendants = False
                else:
                    for i, grad_op_desc in enumerate(grad_op_desc_list):
                        if (
                            grad_op_desc.type() not in visited_ops
                            and _dfs_grad_op(grad_op_desc, fwd_op_desc=op_desc)
                        ):
                            has_infer_inplace_in_grad_descendants = True
            if has_infer_inplace or has_infer_inplace_in_grad_descendants:
                need_run_ops.append((op_desc, fwd_op_desc))
                return True
            else:
                return False

        _dfs_grad_op(op_desc, fwd_op_desc=fwd_op_desc)
        return need_run_ops

    def _check_forward_inplace(
        self, place, no_check_set=None, inplace_atol=None
    ):
        """Check the inplace correctness of given op (self.op_type).
        Run the op twice with same inputs, one enable inplace and another disable, compare their outputs.

        Args:
            place (CPUPlace | CUDAPlace): The place where the op runs.
            no_check_set (list): The names of outputs that needn't check, like XShape of reshape op.
            inplace_atol (float): The tolerable error, only set when op doesn't ensure computational consistency, like group_norm op.

        Returns:
            expect_res (tuple(outs, fetch_list, feed_map, program, op_desc)): The results of given op.
                We return this to construct grad_program and grad_feed_map for grad inplace check.
        """
        # _calc_output() returns in the form tuple(outs, fetch_list, feed_map, program, op_desc) when for_inplace_test=True.
        expect_res = self._calc_output(
            place,
            no_check_set=no_check_set,
            enable_inplace=False,
            for_inplace_test=True,
        )
        actual_res = self._calc_output(
            place,
            no_check_set=no_check_set,
            enable_inplace=True,
            for_inplace_test=True,
        )
        # compare expect_outs and actual_outs
        self._compare_expect_and_actual_outputs(
            place,
            expect_res[1],
            expect_res[0],
            actual_res[0],
            inplace_atol=inplace_atol,
        )
        return expect_res

    def _calc_grad_output(
        self, place, fwd_res, grad_op_desc, enable_inplace=None
    ):
        """Calculate grad_output for given grad_op_desc.

        since we don`t really check gradient accuracy, but check the consistency when using and not using inplace,
        we use fwd outs (also inputs sometimes) to construct grad inputs.

        Args:
            place (CPUPlace | CUDAPlace): The place where the op runs.
            fwd_res (tuple): The outputs of its forward op, in the same form as returns of _calc_outputs() when for_inplace_test is True.
                i.e., tuple(fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc).
            grad_op_desc (OpDesc): The OpDesc of grad op.
            enable_inplace (bool): Enable inplace or not.

        Returns:
            res (tuple(outs, fetch_list, feed_map, program, op_desc)): The results of given grad_op_desc.
        """
1252
        with paddle.static.program_guard(paddle.static.Program()):
1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
            (
                fwd_outs,
                fwd_fetch_list,
                fwd_feed_map,
                fwd_program,
                fwd_op_desc,
            ) = fwd_res
            grad_op_desc_list, op_grad_to_var = core.get_grad_op_desc(
                fwd_op_desc, set(), []
            )
            grad_program = self._construct_grad_program_from_forward(
                fwd_program, grad_op_desc, op_grad_to_var
            )
            grad_feed_map = self._construct_grad_feed_map_from_forward(
                place, fwd_res, grad_op_desc, op_grad_to_var
姜永久 已提交
1268
            )
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
            grad_fetch_list = grad_op_desc.output_arg_names()
            exe = Executor(place)
            program = grad_program
            if enable_inplace is not None:
                build_strategy = fluid.BuildStrategy()
                build_strategy.enable_inplace = enable_inplace
                compiled_program = fluid.CompiledProgram(
                    grad_program
                ).with_data_parallel(
                    loss_name="", build_strategy=build_strategy, places=place
                )
                program = compiled_program
姜永久 已提交
1281

1282 1283 1284 1285 1286 1287
            outs = exe.run(
                program,
                feed=grad_feed_map,
                fetch_list=grad_fetch_list,
                return_numpy=False,
            )
姜永久 已提交
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
        return outs, grad_fetch_list, grad_feed_map, grad_program, grad_op_desc

    def _check_grad_inplace(
        self, place, fwd_res, grad_op_desc, inplace_atol=None
    ):
        """Check the inplace correctness of given grad_op_desc.

        Run the grad op twice with same inputs, one enable inplace and another disable, compare their outputs.
        It works like _check_forward_inplace, but the way to construct program and feed_map differs.
        So we define a new function for grad, grad_grad, etc.

        Args:
            place (CPUPlace | CUDAPlace): The place where the op runs.
            fwd_res (tuple): The outputs of its forward op, in the same form as returns of _calc_outputs() when for_inplace_test is True.
                i.e., tuple(fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc).
            grad_op_desc (OpDesc): The OpDesc of grad op.
            inplace_atol (float): The tolerable error, only set when op doesn't ensure computational consistency, like group_norm op.

        Returns:
            expect_res (tuple(outs, fetch_list, feed_map, program, op_desc)): The results of given op.
                We return this to construct grad_program and grad_feed_map for grad inplace check.
        """
        expect_res = self._calc_grad_output(
            place, fwd_res, grad_op_desc, enable_inplace=False
        )
        actual_res = self._calc_grad_output(
            place, fwd_res, grad_op_desc, enable_inplace=True
        )

        self._compare_expect_and_actual_outputs(
            place,
            expect_res[1],
            expect_res[0],
            actual_res[0],
            inplace_atol=inplace_atol,
        )
        return expect_res

    def check_inplace_output_with_place(
        self, place, no_check_set=None, inplace_atol=None
    ):
        """Chech the inplace correctness of given op, its grad op, its grad_grad op, etc.

        (1) Get all ops need to run. (see conditions in _get_need_run_ops())
        (2) Run op in need_run_ops, and do inplace check if it has infer_inplace.

        Args:
            place (CPUPlace | CUDAPlace): The place where the op runs.
            no_check_set (list): The names of outputs that needn't check, like XShape of reshape op.
            inplace_atol (float): The tolerable error, only set when op doesn't ensure computational consistency, like group_norm op.

        Returns:
            None
        """
        if getattr(self, "no_need_check_inplace", False):
            return

        has_infer_inplace = fluid.core.has_infer_inplace(self.op_type)
        has_grad_op_maker = fluid.core.has_grad_op_maker(self.op_type)
        fwd_res = self._calc_output(
            place, no_check_set=no_check_set, for_inplace_test=True
        )
        op_desc = fwd_res[4]
        need_run_ops = self._get_need_run_ops(op_desc)

        res = {}
        if hasattr(self, 'attrs') and bool(self.attrs.get('use_xpu', False)):
            return
        for op_desc, father_op_desc in reversed(need_run_ops):
            # The first one is the forward op
            has_infer_inplace = fluid.core.has_infer_inplace(op_desc.type())
            if op_desc.type() == self.op_type:
                if has_infer_inplace:
                    res[op_desc] = self._check_forward_inplace(
                        place,
                        no_check_set=no_check_set,
                        inplace_atol=inplace_atol,
                    )
                else:
                    res[op_desc] = self._calc_output(
                        place, no_check_set=no_check_set, for_inplace_test=True
                    )
            else:
                # TODO(zhiqiu): enhance inplace_grad test for ops (sum and activation) using mkldnn
                # skip op that use_mkldnn currently
                flags_use_mkldnn = fluid.core.globals()["FLAGS_use_mkldnn"]
                attrs_use_mkldnn = hasattr(self, 'attrs') and bool(
                    self.attrs.get('use_mkldnn', False)
                )
                if flags_use_mkldnn or attrs_use_mkldnn:
                    warnings.warn(
                        "check inplace_grad for ops using mkldnn is not supported"
                    )
                    continue
                if has_infer_inplace:
                    fwd_res = res[father_op_desc]
                    res[op_desc] = self._check_grad_inplace(
                        place, fwd_res, op_desc, inplace_atol=inplace_atol
                    )
                else:
                    res[op_desc] = self._calc_grad_output(
                        place, fwd_res, op_desc
                    )

    def check_output_with_place(
        self,
        place,
        atol=0,
        no_check_set=None,
        equal_nan=False,
        check_dygraph=True,
1399
        check_prim=False,
姜永久 已提交
1400 1401
        inplace_atol=None,
    ):
1402 1403
        core._set_prim_all_enabled(False)

姜永久 已提交
1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
        def find_imperative_actual(target_name, dygraph_outs, place):
            for name in dygraph_outs:
                if name == target_name:
                    return dygraph_outs[name][0]
                var_list = dygraph_outs[name]
                for i, var in enumerate(var_list):
                    if var.name == target_name:
                        return dygraph_outs[name][i]
            self.assertTrue(
                False,
                "Found failed {} {}".format(dygraph_outs.keys(), target_name),
            )

        def find_actual(target_name, fetch_list):
            found = [
                i
                for i, var_name in enumerate(fetch_list)
                if var_name == target_name
            ]
            self.assertTrue(
                len(found) == 1, "Found {} {}".format(len(found), target_name)
            )
            return found[0]

        class Checker:
            """base class for check with self.outputs.
            currently don't support check between checkers.
            """

            def __init__(self, op_test, expect_dict):
                """expect_dict is the self.outputs
                support : {str: [numpy]} and {str: [(str, numpy), (str, numpy)]}
                """
                self.expects = expect_dict
                self.checker_name = "checker"
                self.op_test = op_test  # stop the op_test object.
                self.op_type = op_test.op_type

            def init(self):
                pass

            def convert_uint16_to_float(self, actual_np, expect_np):
                raise NotImplementedError("base class, not implement!")

            def calculate_output(self):
                """
                judge whether convert current output and expect to uint16.
                return True | False
                """

            def _is_skip_name(self, name):
                if name not in self.expects:
                    return True
                if no_check_set is not None and name in no_check_set:
                    return True
                return False

            def find_actual_value(self, name):
                """return: (actual_tensor(var_base), actual_numpy)"""
                raise NotImplementedError("base class, not implement!")

            def _compare_numpy(self, name, actual_np, expect_np):
                self.op_test.assertTrue(
                    np.allclose(
                        actual_np,
                        expect_np,
                        atol=atol,
                        rtol=self.rtol if hasattr(self, 'rtol') else 1e-5,
                        equal_nan=equal_nan,
                    ),
                    "Output ("
                    + name
                    + ") has diff at "
                    + str(place)
                    + " in "
                    + self.checker_name,
                )

            def _compare_list(self, name, actual, expect):
                """if expect is a tuple, we need to compare list."""
                raise NotImplementedError("base class, not implement!")

            def compare_single_output_with_expect(self, name, expect):
                actual, actual_np = self.find_actual_value(name)
                expect_np = expect[0] if isinstance(expect, tuple) else expect
                actual_np, expect_np = self.convert_uint16_to_float_ifneed(
                    actual_np, expect_np
                )
                # NOTE(zhiqiu): np.allclose([], [1.]) returns True
                # see details: https://stackoverflow.com/questions/38331703/why-does-numpys-broadcasting-sometimes-allow-comparing-arrays-of-different-leng
                if expect_np.size == 0:
                    self.op_test.assertTrue(actual_np.size == 0)
                self._compare_numpy(name, actual_np, expect_np)
                if isinstance(expect, tuple):
                    self._compare_list(name, actual, expect)

            def compare_outputs_with_expects(self):
                for out_name, out_dup in Operator.get_op_outputs(self.op_type):
                    if self._is_skip_name(out_name):
                        continue
                    if out_dup:
                        # if self.output = {'name': [(subname, Tensor), (subname, Tensor)]}
                        sub_out = self.expects[out_name]
                        if not isinstance(sub_out, list):
                            raise AssertionError(
                                "sub_out type %s is not list", type(sub_out)
                            )
                        for item in sub_out:
                            sub_out_name, expect = item[0], item[1]
                            self.compare_single_output_with_expect(
                                sub_out_name, expect
                            )
                    else:
                        expect = self.expects[out_name]
                        self.compare_single_output_with_expect(out_name, expect)

            def check(self):
                """
                return None means ok, raise Error means failed.

                the main enter point of Checker class
                """
                self.init()
                self.calculate_output()
                self.compare_outputs_with_expects()

        class StaticChecker(Checker):
            def init(self):
                self.checker_name = "static checker"

            def calculate_output(self):
                outs, fetch_list = self.op_test._calc_output(
                    place, no_check_set=no_check_set
                )
                self.outputs = outs
                self.fetch_list = fetch_list

            def find_actual_value(self, name):
                idx = find_actual(name, self.fetch_list)
                actual = self.outputs[idx]
                actual_t = np.array(actual)
                return actual, actual_t

            def convert_uint16_to_float_ifneed(self, actual_np, expect_np):
                """
                judge whether convert current output and expect to uint16.
                return True | False
                """
                if actual_np.dtype == np.uint16 and expect_np.dtype in [
                    np.float32,
                    np.float64,
                ]:
                    actual_np = convert_uint16_to_float(actual_np)
                    self.rtol = 1.0e-2
                else:
                    self.rtol = 1.0e-5
                if (
                    expect_np.dtype == np.uint16
                    and actual_np.dtype == np.uint16
                ):
                    nonlocal atol
                    expect_np = convert_uint16_to_float(expect_np)
                    actual_np = convert_uint16_to_float(actual_np)
                    atol = max(atol, 0.03)
                return actual_np, expect_np

            def _compare_list(self, name, actual, expect):
                """if expect is a tuple, we need to compare list."""
                self.op_test.assertListEqual(
                    actual.recursive_sequence_lengths(),
                    expect[1],
                    "Output (" + name + ") has different lod at " + str(place),
                )

        class DygraphChecker(Checker):
            def init(self):
                self.checker_name = "dygraph checker"

            def calculate_output(self):
                # we only check end2end api when check_dygraph=True
                self.is_python_api_test = True
                dygraph_outs = self.op_test._calc_python_api_output(place)
                if dygraph_outs is None:
                    self.is_python_api_test = False
                    # missing KernelSignature, fall back to eager middle output.
                    dygraph_outs = self.op_test._calc_dygraph_output(
                        place, no_check_set=no_check_set
                    )
                self.outputs = dygraph_outs

            def _compare_numpy(self, name, actual_np, expect_np):
                if (
                    functools.reduce(lambda x, y: x * y, actual_np.shape, 1)
                    == 0
                    and functools.reduce(lambda x, y: x * y, expect_np.shape, 1)
                    == 0
                ):
                    pass
                else:
                    self.op_test.assertTrue(
                        np.allclose(
                            actual_np,
                            expect_np,
                            atol=atol,
                            rtol=self.rtol if hasattr(self, 'rtol') else 1e-5,
                            equal_nan=equal_nan,
                        ),
                        "Output ("
                        + name
                        + ") has diff at "
                        + str(place)
                        + " in "
                        + self.checker_name,
                    )

            def convert_uint16_to_float_ifneed(self, actual_np, expect_np):
                if actual_np.dtype == np.uint16 and expect_np.dtype in [
                    np.float32,
                    np.float64,
                ]:
                    self.rtol = 1.0e-2
                else:
                    self.rtol = 1.0e-5
                if self.op_test.is_bfloat16_op():
                    if actual_np.dtype == np.uint16:
                        actual_np = convert_uint16_to_float(actual_np)
                    if expect_np.dtype == np.uint16:
                        expect_np = convert_uint16_to_float(expect_np)
                return actual_np, expect_np

            def find_actual_value(self, name):
                with fluid.dygraph.base.guard(place=place):
                    imperative_actual = find_imperative_actual(
                        name, self.outputs, place
                    )
                    imperative_actual_t = np.array(
                        imperative_actual.value().get_tensor()
                    )
                    return imperative_actual, imperative_actual_t

            def _compare_list(self, name, actual, expect):
                """if expect is a tuple, we need to compare list."""
                with fluid.dygraph.base.guard(place=place):
                    self.op_test.assertListEqual(
                        actual.value()
                        .get_tensor()
                        .recursive_sequence_lengths(),
                        expect[1],
                        "Output ("
                        + name
                        + ") has different lod at "
                        + str(place)
                        + " in dygraph mode",
                    )

            def _is_skip_name(self, name):
                # if in final state and kernel signature don't have name, then skip it.
                if (
                    self.is_python_api_test
                    and hasattr(self.op_test, "python_out_sig")
                    and name not in self.op_test.python_out_sig
                ):
                    return True
                return super()._is_skip_name(name)

1669 1670 1671 1672 1673 1674 1675 1676 1677
        if check_prim:
            prim_checker = PrimForwardChecker(self, place)
            prim_checker.check()
            # Support operators which are not in the NO_FP64_CHECK_GRAD_OP_LIST list can be test prim with fp32
            setattr(self.__class__, 'check_prim', True)
            self.__class__.op_type = self.op_type
            if prim_checker.is_only_check_prim():
                self.only_prim = True
                return
姜永久 已提交
1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822
        # set some flags by the combination of arguments.
        self.infer_dtype_from_inputs_outputs(self.inputs, self.outputs)
        if (
            self.dtype == np.float64
            and self.op_type
            not in op_threshold_white_list.NEED_FIX_FP64_CHECK_OUTPUT_THRESHOLD_OP_LIST
        ):
            atol = 0

        if self.is_bfloat16_op():
            if self.is_mkldnn_op():
                check_dygraph = False

                if hasattr(self, 'force_fp32_output') and getattr(
                    self, 'force_fp32_output'
                ):
                    atol = 1e-2
                else:
                    atol = 2
            else:
                atol = 1e-1

        if no_check_set is not None:
            if (
                self.op_type
                not in no_check_set_white_list.no_check_set_white_list
            ):
                raise AssertionError(
                    "no_check_set of op %s must be set to None." % self.op_type
                )
        static_checker = StaticChecker(self, self.outputs)
        static_checker.check()
        outs, fetch_list = static_checker.outputs, static_checker.fetch_list
        if check_dygraph:
            dygraph_checker = DygraphChecker(self, self.outputs)
            dygraph_checker.check()
            dygraph_dygraph_outs = dygraph_checker.outputs

        # Note(zhiqiu): inplace_atol should be only set when op doesn't ensure
        # computational consistency.
        # For example, group_norm uses AtomicAdd on CUDAPlace, which do not ensure
        # computation order when multiple threads write the same address. So the
        # result of group_norm is non-deterministic when datatype is float.
        # When inplace_atol is not None, the inplace check uses numpy.allclose
        # to check inplace result instead of numpy.array_equal.
        if inplace_atol is not None:
            warnings.warn(
                "inplace_atol should only be set when op doesn't ensure computational consistency, please check it!"
            )
        # Check inplace for given op, its grad op, its grad_grad op, etc.
        # No effect on original OpTest
        # Currently not support ParallelExecutor on XPUPlace.
        if (
            not paddle.is_compiled_with_xpu()
            and not paddle.is_compiled_with_npu()
            and not paddle.is_compiled_with_mlu()
            and not isinstance(place, core.CustomPlace)
        ):
            self.check_inplace_output_with_place(
                place, no_check_set=no_check_set, inplace_atol=inplace_atol
            )

        if check_dygraph:
            return outs, dygraph_dygraph_outs, fetch_list
        else:
            return outs, fetch_list

    def check_compile_vs_runtime(self, fetch_list, fetch_outs):
        def find_fetch_index(target_name, fetch_list):
            found = [
                i
                for i, var_name in enumerate(fetch_list)
                if var_name == target_name
            ]
            if len(found) == 0:
                return -1
            else:
                self.assertTrue(
                    len(found) == 1,
                    "Found {} {}".format(len(found), target_name),
                )
                return found[0]

        for name in self.op.desc.output_names():
            var_names = self.op.desc.output(name)
            for var_name in var_names:
                i = find_fetch_index(var_name, fetch_list)
                if i == -1:
                    # The output is dispensiable or intermediate.
                    break
                out = fetch_outs[i]
                if isinstance(out, core.LoDTensor):
                    lod_level_runtime = len(out.lod())
                else:
                    if isinstance(out, core.LoDTensorArray):
                        warnings.warn(
                            "The check of LoDTensorArray's lod_level is not implemented now!"
                        )
                    lod_level_runtime = 0

                var = self.program.global_block().var(var_name)
                if var.type == core.VarDesc.VarType.LOD_TENSOR:
                    lod_level_compile = var.lod_level
                else:
                    lod_level_compile = 0
                self.assertEqual(
                    lod_level_compile,
                    lod_level_runtime,
                    "The lod_level of Output ("
                    + name
                    + ") is different between compile-time and runtime ("
                    + str(lod_level_compile)
                    + " vs "
                    + str(lod_level_runtime)
                    + ")",
                )

    def _get_places(self):
        if self.dtype == np.float16:
            if core.is_compiled_with_cuda() and core.op_support_gpu(
                self.op_type
            ):
                place = core.CUDAPlace(0)
                if core.is_float16_supported(place):
                    return [place]
                else:
                    return []
            else:
                return []
        places = [fluid.CPUPlace()]
        cpu_only = self._cpu_only if hasattr(self, '_cpu_only') else False
        if (
            core.is_compiled_with_cuda()
            and core.op_support_gpu(self.op_type)
            and not cpu_only
        ):
            places.append(core.CUDAPlace(0))
        return places

    def check_output(
        self,
        atol=1e-5,
        no_check_set=None,
        equal_nan=False,
        check_dygraph=True,
1823
        check_prim=False,
姜永久 已提交
1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
        inplace_atol=None,
    ):

        self.__class__.op_type = self.op_type
        if self.is_mkldnn_op():
            self.__class__.use_mkldnn = True

        if self.is_xpu_op():
            self.__class__.use_xpu = True

        places = self._get_places()
        for place in places:
            res = self.check_output_with_place(
                place,
                atol,
                no_check_set,
                equal_nan,
                check_dygraph=check_dygraph,
1842
                check_prim=check_prim,
姜永久 已提交
1843 1844
                inplace_atol=inplace_atol,
            )
1845 1846
            if hasattr(self, 'only_prim') and self.only_prim:
                continue
姜永久 已提交
1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
            if check_dygraph:
                outs, dygraph_dygraph_outs, fetch_list = res
            else:
                outs, fetch_list = res
            if (
                self.op_type
                not in compile_vs_runtime_white_list.COMPILE_RUN_OP_WHITE_LIST
            ):
                self.check_compile_vs_runtime(fetch_list, outs)

    def check_output_customized(self, checker, custom_place=None):
        places = self._get_places()
        if custom_place:
            places.append(custom_place)
        for place in places:
            outs = self.calc_output(place)
            outs = [np.array(out) for out in outs]
            outs.sort(key=len)
            checker(outs)

    def check_output_with_place_customized(self, checker, place):
        outs = self.calc_output(place)
        outs = [np.array(out) for out in outs]
        outs.sort(key=len)
        checker(outs)

    def _assert_is_close(
        self,
        numeric_grads,
        analytic_grads,
        names,
        max_relative_error,
        msg_prefix,
    ):
        for a, b, name in zip(numeric_grads, analytic_grads, names):
            # It asserts np.abs(a - b) / np.abs(a) < max_relative_error, in which
            # max_relative_error is 1e-7. According to the value of np.abs(a), we
            # change np.abs(a) to achieve dynamic threshold. For example, if
            # the value of np.abs(a) is between 1e-10 and 1e-8, we set np.abs(a)*=1e4.
            # Therefore, it asserts np.abs(a - b) / (np.abs(a)*1e4) < max_relative_error,
            # which is the same as np.abs(a - b) / np.abs(a) < max_relative_error*1e4.
            abs_a = np.abs(a)
            if abs_a.ndim > 0:
                if (
                    self.dtype == np.float64
                    and self.op_type
                    not in op_threshold_white_list.NEED_FIX_FP64_CHECK_GRAD_THRESHOLD_OP_LIST
                ):
                    abs_a[abs_a < 1e-10] = 1e-3
                    abs_a[np.logical_and(abs_a > 1e-10, abs_a <= 1e-8)] *= 1e4
                    abs_a[np.logical_and(abs_a > 1e-8, abs_a <= 1e-6)] *= 1e2
                elif self.is_bfloat16_op():
                    abs_a[abs_a < 1e-2] = 1
                else:
                    abs_a[abs_a < 1e-3] = 1
            elif abs_a.ndim == 0:
                if (
                    self.dtype == np.float64
                    and self.op_type
                    not in op_threshold_white_list.NEED_FIX_FP64_CHECK_GRAD_THRESHOLD_OP_LIST
                ):
                    if abs_a < 1e-10:
                        abs_a = 1e-3
                    elif abs_a > 1e-10 and abs_a <= 1e-8:
                        abs_a = abs_a * 1e4
                    elif abs_a > 1e-8 and abs_a <= 1e-6:
                        abs_a = abs_a * 1e2
                elif self.is_bfloat16_op():
                    abs_a = 1 if abs_a < 1e-2 else abs_a
                else:
                    abs_a = 1 if abs_a < 1e-3 else abs_a

            diff_mat = np.abs(a - b) / abs_a
            max_diff = np.max(diff_mat)

            def err_msg():
                offset = np.argmax(diff_mat > max_relative_error)
                return (
                    "Operator %s error, %s variable %s (shape: %s, dtype: %s) max gradient diff %e over limit %e, "
                    "the first error element is %d, expected %e, but got %e."
                ) % (
                    self.op_type,
                    msg_prefix,
                    name,
                    str(a.shape),
                    self.dtype,
                    max_diff,
                    max_relative_error,
                    offset,
                    a.flatten()[offset],
                    b.flatten()[offset],
                )

            self.assertLessEqual(max_diff, max_relative_error, err_msg())

    def _check_grad_helper(self):
        self.infer_dtype_from_inputs_outputs(self.inputs, self.outputs)
        self.__class__.op_type = self.op_type
        self.__class__.exist_check_grad = True
        if self.dtype == np.float64:
            self.__class__.exist_fp64_check_grad = True

    def check_grad(
        self,
        inputs_to_check,
        output_names,
        no_grad_set=None,
        numeric_grad_delta=0.005,
        in_place=False,
        max_relative_error=0.005,
        user_defined_grads=None,
        user_defined_grad_outputs=None,
        check_dygraph=True,
1960
        check_prim=False,
姜永久 已提交
1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975
    ):
        self._check_grad_helper()
        places = self._get_places()
        for place in places:
            self.check_grad_with_place(
                place,
                inputs_to_check,
                output_names,
                no_grad_set,
                numeric_grad_delta,
                in_place,
                max_relative_error,
                user_defined_grads,
                user_defined_grad_outputs,
                check_dygraph=check_dygraph,
1976
                check_prim=check_prim,
姜永久 已提交
1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
            )

    def check_grad_with_place(
        self,
        place,
        inputs_to_check,
        output_names,
        no_grad_set=None,
        numeric_grad_delta=0.005,
        in_place=False,
        max_relative_error=0.005,
        user_defined_grads=None,
        user_defined_grad_outputs=None,
        check_dygraph=True,
1991
        check_prim=False,
姜永久 已提交
1992 1993
        numeric_place=None,
    ):
1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
        core._set_prim_all_enabled(False)
        if check_prim:
            prim_grad_checker = PrimGradChecker(
                self,
                place,
                inputs_to_check,
                output_names,
                no_grad_set,
                user_defined_grad_outputs,
            )
            prim_grad_checker.check()
            # Support operators which are not in the NO_FP64_CHECK_GRAD_OP_LIST list can be test prim with fp32
            setattr(self.__class__, 'check_prim', True)
            self._check_grad_helper()
            if prim_grad_checker.is_only_check_prim():
                self.only_prim = True
                return
姜永久 已提交
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362
        self.scope = core.Scope()
        op_inputs = self.inputs if hasattr(self, "inputs") else dict()
        op_outputs = self.outputs if hasattr(self, "outputs") else dict()
        op_attrs = self.attrs if hasattr(self, "attrs") else dict()

        self._check_grad_helper()
        if self.is_bfloat16_op() and self.is_mkldnn_op():
            check_dygraph = False

        if (
            self.dtype == np.float64
            and self.op_type
            not in op_threshold_white_list.NEED_FIX_FP64_CHECK_GRAD_THRESHOLD_OP_LIST
        ):
            numeric_grad_delta = 1e-5
            max_relative_error = 1e-7

        cache_list = None
        if hasattr(self, "cache_name_list"):
            cache_list = self.cache_name_list

        # oneDNN numeric gradient should use CPU kernel
        use_onednn = False
        if "use_mkldnn" in op_attrs and op_attrs["use_mkldnn"]:
            op_attrs["use_mkldnn"] = False
            use_onednn = True

        self.op = create_op(
            self.scope,
            self.op_type,
            op_inputs,
            op_outputs,
            op_attrs,
            cache_list=cache_list,
        )

        if use_onednn:
            op_attrs["use_mkldnn"] = True

        if no_grad_set is None:
            no_grad_set = set()
        else:
            if (
                (self.op_type not in no_grad_set_white_list.NEED_TO_FIX_OP_LIST)
                and (
                    self.op_type not in no_grad_set_white_list.NOT_CHECK_OP_LIST
                )
                and (not self.is_bfloat16_op())
            ):
                raise AssertionError(
                    "no_grad_set must be None, op_type is "
                    + self.op_type
                    + " Op."
                )

        for input_to_check in inputs_to_check:
            set_input(self.scope, self.op, self.inputs, place)
            tensor_to_check = self.scope.find_var(input_to_check).get_tensor()
            tensor_size = functools.reduce(
                lambda a, b: a * b, tensor_to_check.shape(), 1
            )
            tensor_ndim = len(tensor_to_check.shape())
            # for 0D Tensor, it's additional case for OP, so not raise error
            if tensor_ndim > 0 and tensor_size < 100:
                self.__class__.input_shape_is_large = False

        if not type(output_names) is list:
            output_names = [output_names]

        if numeric_place is None:
            numeric_place = place

        numeric_grads = user_defined_grads or [
            get_numeric_gradient(
                numeric_place,
                self.scope,
                self.op,
                self.inputs,
                input_to_check,
                output_names,
                delta=numeric_grad_delta,
                in_place=in_place,
            )
            for input_to_check in inputs_to_check
        ]
        analytic_grads = self._get_gradient(
            inputs_to_check,
            place,
            output_names,
            no_grad_set,
            user_defined_grad_outputs,
        )
        # comparison of bf16 results will happen as fp32
        # loop over list of grads and convert bf16 to fp32
        fp32_analytic_grads = []
        for grad in analytic_grads:
            if grad.dtype == np.uint16:
                grad = convert_uint16_to_float(grad)
                max_relative_error = (
                    0.04 if max_relative_error < 0.04 else max_relative_error
                )
            fp32_analytic_grads.append(grad)
        analytic_grads = fp32_analytic_grads

        fp32_numeric_grads = []
        for grad in numeric_grads:
            if grad.dtype == np.uint16:
                grad = convert_uint16_to_float(grad)
                max_relative_error = (
                    0.04 if max_relative_error < 0.04 else max_relative_error
                )
            fp32_numeric_grads.append(grad)
        numeric_grads = fp32_numeric_grads

        self._assert_is_close(
            numeric_grads,
            analytic_grads,
            inputs_to_check,
            max_relative_error,
            "Gradient Check On %s" % str(place),
        )

        if check_dygraph:
            with fluid.dygraph.base.guard(place):
                dygraph_dygraph_grad = self._get_dygraph_grad(
                    inputs_to_check,
                    place,
                    output_names,
                    user_defined_grad_outputs,
                    no_grad_set,
                    check_dygraph,
                )
                fp32_grads = []
                for grad in dygraph_dygraph_grad:
                    if grad.dtype == np.uint16:
                        grad = convert_uint16_to_float(grad)
                        max_relative_error = (
                            0.03
                            if max_relative_error < 0.03
                            else max_relative_error
                        )
                    fp32_grads.append(grad)
                dygraph_dygraph_grad = fp32_grads
                self._assert_is_close(
                    numeric_grads,
                    dygraph_dygraph_grad,
                    inputs_to_check,
                    max_relative_error,
                    "Gradient Check On %s" % str(place),
                )

    def _find_var_in_dygraph(self, output_vars, name):
        if name in output_vars:
            return output_vars[name]
        else:
            for output_vars_index in output_vars:
                for output_vars_selected in output_vars[output_vars_index]:
                    if output_vars_selected.name == name:
                        return output_vars_selected

    def _get_dygraph_grad(
        self,
        inputs_to_check,
        place,
        output_names,
        user_defined_grad_outputs=None,
        no_grad_set=None,
        check_dygraph=True,
    ):
        with fluid.dygraph.base.guard(place=place):
            block = fluid.default_main_program().global_block()

            op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)

            # prepare input variable
            inputs, inputs_grad_dict = self.append_input_output_for_dygraph(
                op_proto, self.inputs, True, True, block
            )

            # prepare output variable
            outputs = self.append_input_output_for_dygraph(
                op_proto, self.outputs, False, False, block
            )

            # prepare attributes
            attrs_outputs = {}
            if hasattr(self, "attrs"):
                for attrs_name in self.attrs:
                    if self.attrs[attrs_name] is not None:
                        attrs_outputs[attrs_name] = self.attrs[attrs_name]

            if check_dygraph:
                dygraph_outputs = self._calc_python_api_output(
                    place, inputs, outputs
                )
            # if outputs is None, kernel sig is empty or other error is happens.
            if not check_dygraph or dygraph_outputs is None:
                block.append_op(
                    type=self.op_type,
                    inputs=inputs,
                    outputs=outputs,
                    attrs=attrs_outputs if hasattr(self, "attrs") else None,
                )
            else:
                outputs = dygraph_outputs

            if self.dtype == np.uint16:
                cast_inputs = self._find_var_in_dygraph(
                    outputs, output_names[0]
                )
                cast_outputs = block.create_var(
                    dtype="float32", shape=cast_inputs[0].shape
                )
                cast_op = block.append_op(
                    inputs={"X": cast_inputs},
                    outputs={"Out": cast_outputs},
                    type="cast",
                    attrs={
                        "in_dtype": core.VarDesc.VarType.BF16,
                        "out_dtype": core.VarDesc.VarType.FP32,
                    },
                )
                outputs = {output_names[0]: cast_outputs}

            outputs_valid = {}
            for output_name in output_names:
                outputs_valid[output_name] = self._find_var_in_dygraph(
                    outputs, output_name
                )

            if user_defined_grad_outputs is None:
                if len(outputs_valid) == 1:
                    loss = block.create_var(
                        dtype=self.dtype,
                        type=core.VarDesc.VarType.LOD_TENSOR,
                        persistable=False,
                        stop_gradient=False,
                        shape=[1],
                    )
                    for outputs_valid_key in outputs_valid:
                        block.append_op(
                            type="mean",
                            inputs={"X": outputs_valid[outputs_valid_key]},
                            outputs={"Out": [loss]},
                            attrs=None,
                        )
                else:
                    avg_sum = []
                    for cur_loss in outputs_valid:
                        cur_avg_loss = block.create_var(
                            dtype=self.dtype,
                            type=core.VarDesc.VarType.LOD_TENSOR,
                            persistable=False,
                            stop_gradient=False,
                        )
                        block.append_op(
                            type="mean",
                            inputs={"X": outputs_valid[cur_loss]},
                            outputs={"Out": [cur_avg_loss]},
                            attrs=None,
                        )
                        avg_sum.append(cur_avg_loss)
                    loss_sum = block.create_var(
                        dtype=self.dtype,
                        type=core.VarDesc.VarType.LOD_TENSOR,
                        persistable=False,
                        stop_gradient=False,
                        shape=[1],
                    )
                    block.append_op(
                        type='sum',
                        inputs={"X": avg_sum},
                        outputs={"Out": loss_sum},
                        attrs=None,
                    )
                    loss = block.create_var(
                        dtype=self.dtype,
                        type=core.VarDesc.VarType.LOD_TENSOR,
                        persistable=False,
                        stop_gradient=False,
                        shape=[1],
                    )
                    block.append_op(
                        type='scale',
                        inputs={"X": loss_sum},
                        outputs={"Out": loss},
                        attrs={'scale': 1.0 / float(len(avg_sum))},
                    )
                loss.backward()

                fetch_list_grad = []
                for inputs_to_check_name in inputs_to_check:
                    a = inputs_grad_dict[inputs_to_check_name].gradient()
                    fetch_list_grad.append(a)
                return fetch_list_grad
            else:
                # user_defined_grad_outputs here are numpy arrays
                if not isinstance(user_defined_grad_outputs, list):
                    user_defined_grad_outputs = [user_defined_grad_outputs]
                grad_outputs = []
                for grad_out_value in user_defined_grad_outputs:
                    grad_outputs.append(paddle.to_tensor(grad_out_value))
                # delete the inputs which no need to calculate grad
                for no_grad_val in no_grad_set:
                    del inputs[no_grad_val]

                if in_dygraph_mode():
                    core.eager.run_backward(
                        fluid.layers.utils.flatten(outputs), grad_outputs, False
                    )
                    grad_inputs = []
                    for inputs_list in inputs.values():
                        for inp in inputs_list:
                            grad_inputs.append(inp.grad.numpy())
                    return grad_inputs
                else:
                    grad_inputs = paddle.grad(
                        outputs=fluid.layers.utils.flatten(outputs),
                        inputs=fluid.layers.utils.flatten(inputs),
                        grad_outputs=grad_outputs,
                    )
                    return [grad.numpy() for grad in grad_inputs]

    @staticmethod
    def _numpy_to_lod_tensor(np_value, lod, place):
        tensor = core.LoDTensor()
        tensor.set(np_value, place)
        if lod is not None:
            tensor.set_recursive_sequence_lengths(lod)
        return tensor

    @staticmethod
    def np_dtype_to_fluid_dtype(input):
        return input

    @staticmethod
    def fluid_dtype_to_np_dtype(self, dtype):
        return dtype

    @staticmethod
    def np_value_to_fluid_value(input):
        return input

    def _get_gradient(
        self,
        input_to_check,
        place,
        output_names,
        no_grad_set,
        user_defined_grad_outputs=None,
        parallel=False,
    ):
2363
        with paddle.static.program_guard(paddle.static.Program()):
2364 2365 2366 2367
            prog = Program()
            scope = core.Scope()
            block = prog.global_block()
            self._append_ops(block)
姜永久 已提交
2368

2369 2370 2371
            inputs = self._get_inputs(block)
            outputs = self._get_outputs(block)
            feed_dict = self.feed_var(inputs, place)
姜永久 已提交
2372

2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395
            if user_defined_grad_outputs is None:
                if self.dtype == np.uint16:
                    cast_inputs = list(map(block.var, output_names))
                    cast_outputs = block.create_var(
                        dtype="float32", shape=cast_inputs[0].shape
                    )
                    cast_op = block.append_op(
                        inputs={"X": cast_inputs},
                        outputs={"Out": cast_outputs},
                        type="cast",
                        attrs={
                            "in_dtype": core.VarDesc.VarType.BF16,
                            "out_dtype": core.VarDesc.VarType.FP32,
                        },
                    )
                    cast_op.desc.infer_var_type(block.desc)
                    cast_op.desc.infer_shape(block.desc)
                    output_names = [cast_outputs.name]
                loss = append_loss_ops(block, output_names)
                param_grad_list = append_backward(
                    loss=loss,
                    parameter_list=input_to_check,
                    no_grad_set=no_grad_set,
姜永久 已提交
2396
                )
2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424
                fetch_list = [g for p, g in param_grad_list]
            else:
                assert (
                    parallel is False
                ), "unsupported parallel mode when giving custom grad outputs."
                # user_defined_grad_outputs here are numpy arrays
                if not isinstance(user_defined_grad_outputs, list):
                    user_defined_grad_outputs = [user_defined_grad_outputs]
                grad_outputs = []
                for grad_out_value in user_defined_grad_outputs:
                    # `presistable` is used to avoid executor create new var in local scope
                    var = block.create_var(
                        shape=grad_out_value.shape,
                        dtype=grad_out_value.dtype,
                        persistable=True,
                    )
                    true_var = scope.var(var.name)
                    tensor = true_var.get_tensor()
                    tensor.set(grad_out_value, place)
                    grad_outputs.append(var)
                targets = [
                    outputs[name] for name in outputs if name in output_names
                ]
                inputs = [
                    inputs[name] for name in input_to_check if name in inputs
                ]
                grad_inputs = paddle.static.gradients(
                    targets, inputs, grad_outputs, no_grad_set
姜永久 已提交
2425
                )
2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446
                fetch_list = grad_inputs

            if parallel:
                use_cuda = False
                if isinstance(place, fluid.CUDAPlace):
                    use_cuda = True
                compiled_prog = fluid.CompiledProgram(prog).with_data_parallel(
                    loss_name=loss.name, places=place
                )
                prog = compiled_prog
            executor = fluid.Executor(place)
            res = list(
                map(
                    np.array,
                    executor.run(
                        prog,
                        feed_dict,
                        fetch_list,
                        scope=scope,
                        return_numpy=False,
                    ),
姜永久 已提交
2447 2448
                )
            )
2449
        return res
姜永久 已提交
2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472


class OpTestTool:
    @classmethod
    def skip_if(cls, condition: object, reason: str):
        return unittest.skipIf(condition, reason)

    @classmethod
    def skip_if_not_cpu_bf16(cls):
        return OpTestTool.skip_if(
            not (
                isinstance(_current_expected_place(), core.CPUPlace)
                and core.supports_bfloat16()
            ),
            "Place does not support BF16 evaluation",
        )

    @classmethod
    def skip_if_not_cpu(cls):
        return OpTestTool.skip_if(
            not isinstance(_current_expected_place(), core.CPUPlace),
            "OneDNN supports only CPU for now",
        )