pool_op.h 10.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17
#include <algorithm>
18 19
#include <string>
#include <vector>
Y
Yi Wang 已提交
20 21 22 23
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/pooling.h"
24 25 26 27
namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
28 29 30 31 32 33

class PoolOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override;
34 35 36 37

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override;
38 39 40 41 42 43 44
};

class PoolOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override;
45 46 47 48

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override;
49 50 51 52
};

class Pool2dOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
53
  void Make() override;
54 55 56 57
};

class Pool3dOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
58
  void Make() override;
59
};
60 61 62

template <typename T = int>
inline void UpdatePadding(std::vector<T>* paddings, const bool global_pooling,
63 64 65
                          const bool adaptive,
                          const std::string padding_algorithm,
                          const framework::DDim data_dims,
66 67
                          const std::vector<T>& strides,
                          const std::vector<T>& ksize) {
68
  // set padding size == data_dims.size() * 2
69
  auto data_shape = framework::vectorize<T>(data_dims);
70 71
  if (static_cast<int>(paddings->size()) == data_dims.size()) {
    for (int i = 0; i < data_dims.size(); ++i) {
72
      T copy_pad = *(paddings->begin() + 2 * i);
73 74 75 76 77 78 79 80
      paddings->insert(paddings->begin() + 2 * i + 1, copy_pad);
    }
  } else {
    PADDLE_ENFORCE_EQ(
        data_dims.size() * 2, paddings->size(),
        "Paddings size should be the same or twice as the pooling size.");
  }

81
  // when padding_algorithm is "VALID" or "SAME"
82
  if (padding_algorithm == "SAME") {
83
    for (int i = 0; i < data_dims.size(); ++i) {
84 85
      T out_size = (data_dims[i] + strides[i] - 1) / strides[i];
      T pad_sum =
86
          std::max((out_size - 1) * strides[i] + ksize[i] - data_shape[i], 0);
87 88
      T pad_0 = pad_sum / 2;
      T pad_1 = pad_sum - pad_0;
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
      *(paddings->begin() + i * 2) = pad_0;
      *(paddings->begin() + i * 2 + 1) = pad_1;
    }
  } else if (padding_algorithm == "VALID") {
    for (auto it = paddings->begin(); it != paddings->end(); it++) {
      *it = 0;
    }
  }

  // if global_pooling == true or adaptive == true, padding will be ignore
  if (global_pooling || adaptive) {
    for (auto it = paddings->begin(); it != paddings->end(); it++) {
      *it = 0;
    }
  }
}

106 107
template <typename T = int>
inline void UpdateKsize(std::vector<T>* ksize,
108 109 110
                        const framework::DDim data_dims) {
  ksize->resize(static_cast<size_t>(data_dims.size()));
  for (size_t i = 0; i < ksize->size(); ++i) {
111
    *(ksize->begin() + i) = static_cast<T>(data_dims[i]);
112 113
  }
}
114

Q
QI JUN 已提交
115
template <typename DeviceContext, typename T>
C
chengduoZH 已提交
116
class PoolKernel : public framework::OpKernel<T> {
117 118
 public:
  void Compute(const framework::ExecutionContext& context) const override {
C
chengduoZH 已提交
119
    const Tensor* in_x = context.Input<Tensor>("X");
120
    Tensor* out = context.Output<Tensor>("Out");
121

C
chengduoZH 已提交
122
    std::string pooling_type = context.Attr<std::string>("pooling_type");
123 124 125
    std::vector<int> ksize = context.Attr<std::vector<int>>("ksize");
    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
126
    std::string data_format = context.Attr<std::string>("data_format");
127
    bool exclusive = context.Attr<bool>("exclusive");
128
    bool adaptive = context.Attr<bool>("adaptive");
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
    bool global_pooling = context.Attr<bool>("global_pooling");
    std::string padding_algorithm =
        context.Attr<std::string>("padding_algorithm");

    const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC");

    // update paddings
    auto in_x_dims = in_x->dims();
    framework::DDim data_dims;
    if (channel_last) {
      data_dims = framework::slice_ddim(in_x_dims, 1, in_x_dims.size() - 1);
    } else {
      data_dims = framework::slice_ddim(in_x_dims, 2, in_x_dims.size());
    }

    UpdatePadding(&paddings, global_pooling, adaptive, padding_algorithm,
                  data_dims, strides, ksize);
    if (data_dims.size() * 2 == paddings.size()) {
      for (size_t i = 0; i < data_dims.size(); ++i) {
        paddings.erase(paddings.begin() + i + 1);
149 150
      }
    }
151 152 153 154 155

    if (global_pooling) {
      UpdateKsize(&ksize, data_dims);
    }

Q
QI JUN 已提交
156
    auto& dev_ctx = context.template device_context<DeviceContext>();
157 158 159
    switch (ksize.size()) {
      case 2: {
        if (pooling_type == "max") {
C
chengduoZH 已提交
160
          paddle::operators::math::Pool2dFunctor<
Q
QI JUN 已提交
161
              DeviceContext, paddle::operators::math::MaxPool<T>, T>
162
              pool2d_forward;
163
          paddle::operators::math::MaxPool<T> pool_process;
164 165
          pool2d_forward(dev_ctx, *in_x, ksize, strides, paddings, data_format,
                         pool_process, true, false, out);
166

C
chengduoZH 已提交
167
        } else if (pooling_type == "avg") {
C
chengduoZH 已提交
168
          paddle::operators::math::Pool2dFunctor<
Q
QI JUN 已提交
169
              DeviceContext, paddle::operators::math::AvgPool<T>, T>
170
              pool2d_forward;
171
          paddle::operators::math::AvgPool<T> pool_process;
172 173
          pool2d_forward(dev_ctx, *in_x, ksize, strides, paddings, data_format,
                         pool_process, exclusive, adaptive, out);
174 175 176 177
        }
      } break;
      case 3: {
        if (pooling_type == "max") {
C
chengduoZH 已提交
178
          paddle::operators::math::Pool3dFunctor<
Q
QI JUN 已提交
179
              DeviceContext, paddle::operators::math::MaxPool<T>, T>
180
              pool3d_forward;
181
          paddle::operators::math::MaxPool<T> pool_process;
182 183 184
          pool3d_forward(dev_ctx, *in_x, ksize, strides, paddings, data_format,
                         pool_process, true, false, out);

C
chengduoZH 已提交
185
        } else if (pooling_type == "avg") {
C
chengduoZH 已提交
186
          paddle::operators::math::Pool3dFunctor<
Q
QI JUN 已提交
187
              DeviceContext, paddle::operators::math::AvgPool<T>, T>
188
              pool3d_forward;
189
          paddle::operators::math::AvgPool<T> pool_process;
190 191
          pool3d_forward(dev_ctx, *in_x, ksize, strides, paddings, data_format,
                         pool_process, exclusive, adaptive, out);
192 193
        }
      } break;
C
fix bug  
chengduoZH 已提交
194
      default: { PADDLE_THROW("Pool op only supports 2D and 3D input."); }
195 196 197 198
    }
  }
};

Q
QI JUN 已提交
199
template <typename DeviceContext, typename T>
C
chengduoZH 已提交
200
class PoolGradKernel : public framework::OpKernel<T> {
201 202
 public:
  void Compute(const framework::ExecutionContext& context) const override {
C
chengduoZH 已提交
203
    const Tensor* in_x = context.Input<Tensor>("X");
204 205 206
    const Tensor* out = context.Input<Tensor>("Out");
    const Tensor* out_grad =
        context.Input<Tensor>(framework::GradVarName("Out"));
C
chengduoZH 已提交
207
    Tensor* in_x_grad = context.Output<Tensor>(framework::GradVarName("X"));
208

C
chengduoZH 已提交
209
    std::string pooling_type = context.Attr<std::string>("pooling_type");
210 211 212
    std::vector<int> ksize = context.Attr<std::vector<int>>("ksize");
    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
213
    bool exclusive = context.Attr<bool>("exclusive");
214
    bool adaptive = context.Attr<bool>("adaptive");
215 216 217 218 219 220
    std::string data_format = context.Attr<std::string>("data_format");
    bool global_pooling = context.Attr<bool>("global_pooling");
    std::string padding_algorithm =
        context.Attr<std::string>("padding_algorithm");

    const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC");
221

222 223 224 225 226 227 228 229 230 231 232 233 234
    // update paddings
    auto in_x_dims = in_x->dims();
    framework::DDim data_dims;
    if (channel_last) {
      data_dims = framework::slice_ddim(in_x_dims, 1, in_x_dims.size() - 1);
    } else {
      data_dims = framework::slice_ddim(in_x_dims, 2, in_x_dims.size());
    }
    UpdatePadding(&paddings, global_pooling, adaptive, padding_algorithm,
                  data_dims, strides, ksize);
    if (data_dims.size() * 2 == paddings.size()) {
      for (size_t i = 0; i < data_dims.size(); ++i) {
        paddings.erase(paddings.begin() + i + 1);
C
fix bug  
chengduoZH 已提交
235
      }
236
    }
237 238 239 240 241

    if (global_pooling) {
      UpdateKsize(&ksize, data_dims);
    }

Q
QI JUN 已提交
242
    auto& dev_ctx = context.template device_context<DeviceContext>();
C
chengduoZH 已提交
243 244
    if (in_x_grad) {
      in_x_grad->mutable_data<T>(context.GetPlace());
Q
QI JUN 已提交
245 246
      paddle::operators::math::SetConstant<DeviceContext, T> set_constant;
      set_constant(dev_ctx, in_x_grad, 0.0);
247 248 249 250

      switch (ksize.size()) {
        case 2: {
          if (pooling_type == "max") {
Q
QI JUN 已提交
251
            paddle::operators::math::MaxPool2dGradFunctor<DeviceContext, T>
252
                pool2d_backward;
Q
QI JUN 已提交
253
            pool2d_backward(dev_ctx, *in_x, *out, *out_grad, ksize, strides,
254
                            paddings, data_format, in_x_grad);
C
chengduoZH 已提交
255
          } else if (pooling_type == "avg") {
C
chengduoZH 已提交
256
            paddle::operators::math::Pool2dGradFunctor<
Q
QI JUN 已提交
257
                DeviceContext, paddle::operators::math::AvgPoolGrad<T>, T>
258
                pool2d_backward;
259
            paddle::operators::math::AvgPoolGrad<T> pool_process;
Q
QI JUN 已提交
260
            pool2d_backward(dev_ctx, *in_x, *out, *out_grad, ksize, strides,
261 262
                            paddings, data_format, pool_process, exclusive,
                            adaptive, in_x_grad);
263 264 265 266
          }
        } break;
        case 3: {
          if (pooling_type == "max") {
Q
QI JUN 已提交
267
            paddle::operators::math::MaxPool3dGradFunctor<DeviceContext, T>
268
                pool3d_backward;
Q
QI JUN 已提交
269
            pool3d_backward(dev_ctx, *in_x, *out, *out_grad, ksize, strides,
270
                            paddings, data_format, in_x_grad);
C
chengduoZH 已提交
271
          } else if (pooling_type == "avg") {
C
chengduoZH 已提交
272
            paddle::operators::math::Pool3dGradFunctor<
Q
QI JUN 已提交
273
                DeviceContext, paddle::operators::math::AvgPoolGrad<T>, T>
274
                pool3d_backward;
275
            paddle::operators::math::AvgPoolGrad<T> pool_process;
Q
QI JUN 已提交
276
            pool3d_backward(dev_ctx, *in_x, *out, *out_grad, ksize, strides,
277 278
                            paddings, data_format, pool_process, exclusive,
                            adaptive, in_x_grad);
279 280
          }
        } break;
C
fix bug  
chengduoZH 已提交
281
        default: { PADDLE_THROW("Pool op only supports 2D and 3D input."); }
282 283 284 285 286 287 288
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle