trt_models_tester.cc 6.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
N
nhzlx 已提交
14 15 16 17

#include <gflags/gflags.h>
#include <glog/logging.h>
#include <gtest/gtest.h>
18

19
#include "paddle/fluid/inference/tests/api/tester_helper.h"
N
nhzlx 已提交
20 21

namespace paddle {
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
namespace inference {

DEFINE_bool(use_tensorrt, true, "Test the performance of TensorRT engine.");
DEFINE_string(prog_filename, "", "Name of model file.");
DEFINE_string(param_filename, "", "Name of parameters file.");

template <typename ConfigType>
void SetConfig(ConfigType* config, std::string model_dir, bool use_gpu,
               bool use_tensorrt = false, int batch_size = -1) {
  if (!FLAGS_prog_filename.empty() && !FLAGS_param_filename.empty()) {
    config->prog_file = model_dir + "/" + FLAGS_prog_filename;
    config->param_file = model_dir + "/" + FLAGS_param_filename;
  } else {
    config->model_dir = model_dir;
  }
  if (use_gpu) {
    config->use_gpu = true;
    config->device = 0;
    config->fraction_of_gpu_memory = 0.15;
  }
N
nhzlx 已提交
42 43
}

44
template <>
45 46 47
void SetConfig<AnalysisConfig>(AnalysisConfig* config, std::string model_dir,
                               bool use_gpu, bool use_tensorrt,
                               int batch_size) {
48
  if (!FLAGS_prog_filename.empty() && !FLAGS_param_filename.empty()) {
49 50
    config->SetModel(model_dir + "/" + FLAGS_prog_filename,
                     model_dir + "/" + FLAGS_param_filename);
51
  } else {
52
    config->SetModel(model_dir);
53 54
  }
  if (use_gpu) {
55
    config->EnableUseGpu(100, 0);
56 57 58 59 60 61
    if (use_tensorrt) {
      config->EnableTensorRtEngine(1 << 10, batch_size);
      config->pass_builder()->DeletePass("conv_bn_fuse_pass");
      config->pass_builder()->DeletePass("fc_fuse_pass");
      config->pass_builder()->TurnOnDebug();
    } else {
62
      config->SwitchIrOptim();
63 64
    }
  }
65 66
}

67 68 69 70 71 72 73
void profile(std::string model_dir, bool use_analysis, bool use_tensorrt) {
  std::vector<std::vector<PaddleTensor>> inputs_all;
  if (!FLAGS_prog_filename.empty() && !FLAGS_param_filename.empty()) {
    SetFakeImageInput(&inputs_all, model_dir, true, FLAGS_prog_filename,
                      FLAGS_param_filename);
  } else {
    SetFakeImageInput(&inputs_all, model_dir, false, "__model__", "");
N
nhzlx 已提交
74 75
  }

76 77
  std::vector<PaddleTensor> outputs;
  if (use_analysis || use_tensorrt) {
78
    AnalysisConfig config;
79
    config.EnableUseGpu(100, 0);
80
    config.pass_builder()->TurnOnDebug();
81 82
    SetConfig<AnalysisConfig>(&config, model_dir, true, use_tensorrt,
                              FLAGS_batch_size);
83 84 85 86 87 88 89 90
    TestPrediction(reinterpret_cast<PaddlePredictor::Config*>(&config),
                   inputs_all, &outputs, FLAGS_num_threads, true);
  } else {
    NativeConfig config;
    SetConfig<NativeConfig>(&config, model_dir, true, false);
    TestPrediction(reinterpret_cast<PaddlePredictor::Config*>(&config),
                   inputs_all, &outputs, FLAGS_num_threads, false);
  }
91 92
}

93 94 95 96 97 98 99 100
void compare(std::string model_dir, bool use_tensorrt) {
  std::vector<std::vector<PaddleTensor>> inputs_all;
  if (!FLAGS_prog_filename.empty() && !FLAGS_param_filename.empty()) {
    SetFakeImageInput(&inputs_all, model_dir, true, FLAGS_prog_filename,
                      FLAGS_param_filename);
  } else {
    SetFakeImageInput(&inputs_all, model_dir, false, "__model__", "");
  }
101

102 103 104
  AnalysisConfig analysis_config;
  SetConfig<AnalysisConfig>(&analysis_config, model_dir, true, use_tensorrt,
                            FLAGS_batch_size);
T
Tao Luo 已提交
105 106 107
  CompareNativeAndAnalysis(
      reinterpret_cast<const PaddlePredictor::Config*>(&analysis_config),
      inputs_all);
108
}
109

N
nhzlx 已提交
110
void compare_continuous_input(std::string model_dir, bool use_tensorrt) {
111 112 113
  AnalysisConfig analysis_config;
  SetConfig<AnalysisConfig>(&analysis_config, model_dir, true, use_tensorrt,
                            FLAGS_batch_size);
N
nhzlx 已提交
114 115 116 117 118 119 120 121
  auto config =
      reinterpret_cast<const PaddlePredictor::Config*>(&analysis_config);
  auto native_pred = CreateTestPredictor(config, false);
  auto analysis_pred = CreateTestPredictor(config, true);
  for (int i = 0; i < 100; i++) {
    std::vector<std::vector<PaddleTensor>> inputs_all;
    if (!FLAGS_prog_filename.empty() && !FLAGS_param_filename.empty()) {
      SetFakeImageInput(&inputs_all, model_dir, true, FLAGS_prog_filename,
N
nhzlx 已提交
122
                        FLAGS_param_filename, nullptr, i);
N
nhzlx 已提交
123
    } else {
N
nhzlx 已提交
124 125
      SetFakeImageInput(&inputs_all, model_dir, false, "__model__", "", nullptr,
                        i);
N
nhzlx 已提交
126 127 128 129 130 131
    }
    CompareNativeAndAnalysis(native_pred.get(), analysis_pred.get(),
                             inputs_all);
  }
}

132 133 134 135
TEST(TensorRT_mobilenet, compare) {
  std::string model_dir = FLAGS_infer_model + "/mobilenet";
  compare(model_dir, /* use_tensorrt */ true);
}
136

137 138 139 140
TEST(TensorRT_resnet50, compare) {
  std::string model_dir = FLAGS_infer_model + "/resnet50";
  compare(model_dir, /* use_tensorrt */ true);
}
141

142 143 144 145
TEST(TensorRT_resnext50, compare) {
  std::string model_dir = FLAGS_infer_model + "/resnext50";
  compare(model_dir, /* use_tensorrt */ true);
}
146

147 148
TEST(TensorRT_resnext50, profile) {
  std::string model_dir = FLAGS_infer_model + "/resnext50";
N
nhzlx 已提交
149 150 151
  // Set FLAGS_record_benchmark to true to record benchmark to file.
  // FLAGS_record_benchmark=true;
  FLAGS_model_name = "resnext50";
152 153
  profile(model_dir, /* use_analysis */ true, FLAGS_use_tensorrt);
}
154

155 156 157 158 159
TEST(resnext50, compare_analysis_native) {
  std::string model_dir = FLAGS_infer_model + "/resnext50";
  compare(model_dir, false /*use tensorrt*/);
}

160 161
TEST(TensorRT_mobilenet, analysis) {
  std::string model_dir = FLAGS_infer_model + "/" + "mobilenet";
162 163 164 165 166
  compare(model_dir, false /* use_tensorrt */);
}

TEST(AnalysisPredictor, use_gpu) {
  std::string model_dir = FLAGS_infer_model + "/" + "mobilenet";
167 168 169
  AnalysisConfig config;
  config.EnableUseGpu(100, 0);
  config.SetModel(model_dir);
170 171 172 173 174 175 176 177 178 179
  config.pass_builder()->TurnOnDebug();

  std::vector<std::vector<PaddleTensor>> inputs_all;
  auto predictor = CreatePaddlePredictor(config);
  SetFakeImageInput(&inputs_all, model_dir, false, "__model__", "");

  std::vector<PaddleTensor> outputs;
  for (auto& input : inputs_all) {
    ASSERT_TRUE(predictor->Run(input, &outputs));
  }
N
nhzlx 已提交
180 181
}

Y
Yan Chunwei 已提交
182 183 184 185 186
TEST(TensorRT_mobilenet, profile) {
  std::string model_dir = FLAGS_infer_model + "/" + "mobilenet";
  profile(model_dir, true, false);
}

N
nhzlx 已提交
187 188 189 190 191 192 193 194 195 196
TEST(resnet50, compare_continuous_input) {
  std::string model_dir = FLAGS_infer_model + "/resnet50";
  compare_continuous_input(model_dir, true);
}

TEST(resnet50, compare_continuous_input_native) {
  std::string model_dir = FLAGS_infer_model + "/resnet50";
  compare_continuous_input(model_dir, false);
}

197
}  // namespace inference
N
nhzlx 已提交
198
}  // namespace paddle