tensor_utils.cc 19.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/pten/api/lib/utils/tensor_utils.h"
16

17
#include <utility>
18 19 20 21
#include <vector>

#include "paddle/pten/core/compat_utils.h"

22 23 24 25 26 27 28 29 30 31 32 33
namespace paddle {
namespace experimental {

template <typename DstLoD, typename SrcLoD>
void SetLoD(DstLoD* dst, const SrcLoD& src) {
  dst->reserve(src.size());
  dst->clear();
  for (auto&& v : src) {
    dst->emplace_back(v);
  }
}

34
std::unique_ptr<pten::DenseTensor> MakePtenDenseTensorBase(
35
    const paddle::framework::Tensor& src) {
36
  VLOG(3) << "MakePtenDenseTensor based Tensor.";
37 38
  pten::DenseTensorMeta meta{pten::TransToPtenDataType(src.type()),
                             src.dims(),
39
                             src.layout(),
40 41
                             src.offset()};
  auto shared_storage = pten::make_intrusive<SharedStorage>(src.Holder());
42 43 44 45 46
  return std::make_unique<pten::DenseTensor>(std::move(shared_storage),
                                             std::move(meta));
}

std::unique_ptr<pten::DenseTensor> MakePtenDenseTensor(
47 48 49
    const paddle::framework::Tensor& src) {
  auto out = MakePtenDenseTensorBase(
      static_cast<const paddle::framework::Tensor&>(src));
50 51 52
  SetLoD(&(pten::CompatibleDenseTensorUtils::GetMutableMeta(out.get())->lod),
         src.lod());
  return std::move(out);
53 54
}

55
std::unique_ptr<pten::DenseTensor> MakePtenDenseTensorBase(
56
    const paddle::framework::Tensor& src, const pten::TensorArgDef& arg_def) {
57 58
  pten::DenseTensorMeta meta{
      arg_def.dtype, src.dims(), src.layout(), src.offset()};
59

60 61 62
  if (src.IsInitialized() &&
      src.place() == pten::TransToFluidPlace(arg_def.backend)) {
    auto shared_storage = pten::make_intrusive<SharedStorage>(src.Holder());
63 64 65 66 67 68 69 70 71 72 73
    return std::make_unique<pten::DenseTensor>(std::move(shared_storage),
                                               std::move(meta));
  } else {
    return std::make_unique<pten::DenseTensor>(
        std::move(pten::make_intrusive<SharedStorage>(
            pten::TransToFluidPlace(arg_def.backend))),
        std::move(meta));
  }
}

std::unique_ptr<pten::DenseTensor> MakePtenDenseTensor(
74 75
    const paddle::framework::Tensor& src, const pten::TensorArgDef& arg_def) {
  auto out = MakePtenDenseTensorBase(
76 77 78 79
      static_cast<const paddle::framework::Tensor&>(src), arg_def);
  SetLoD(&(pten::CompatibleDenseTensorUtils::GetMutableMeta(out.get())->lod),
         src.lod());
  return std::move(out);
80 81
}

82
pten::Scalar MakePtenScalar(const paddle::framework::Tensor& src) {
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
  PADDLE_ENFORCE_EQ(src.numel(),
                    1,
                    paddle::platform::errors::InvalidArgument(
                        "The Scalar only supports Tensor with 1 element, "
                        "but now Tensor has %d element.",
                        src.numel()));
  switch (src.type()) {
    case paddle::framework::proto::VarType::FP32:
      return {src.template data<float>()[0]};
    case paddle::framework::proto::VarType::FP64:
      return {src.template data<double>()[0]};
    case paddle::framework::proto::VarType::FP16:
      return {src.template data<float16>()[0]};
    case paddle::framework::proto::VarType::BF16:
      return {src.template data<bfloat16>()[0]};
    case paddle::framework::proto::VarType::INT32:
      return {src.template data<int32_t>()[0]};
    case paddle::framework::proto::VarType::INT64:
      return {src.template data<int64_t>()[0]};
    case paddle::framework::proto::VarType::INT16:
      return {src.template data<int16_t>()[0]};
    case paddle::framework::proto::VarType::INT8:
      return {src.template data<int8_t>()[0]};
    case paddle::framework::proto::VarType::UINT8:
      return {src.template data<uint8_t>()[0]};
    case paddle::framework::proto::VarType::BOOL:
      return {src.template data<bool>()[0]};
    case paddle::framework::proto::VarType::COMPLEX64:
      return {src.template data<complex64>()[0]};
    case paddle::framework::proto::VarType::COMPLEX128:
      return {src.template data<complex128>()[0]};
    default:
      PADDLE_THROW(paddle::platform::errors::InvalidArgument(
          "Data type error. Don't support casting a %d LoDTensor to Scalar.",
          src.type()));
  }
}

pten::Scalar MakePtenScalarFromVar(const framework::Variable& variable) {
  auto expected_place = pten::TransToFluidPlace(pten::Backend::CPU);
  if (variable.IsType<framework::LoDTensor>()) {
    const auto& tensor = variable.Get<framework::LoDTensor>();
    if (!platform::is_same_place(tensor.place(), expected_place)) {
      framework::LoDTensor tmp_tensor;
      framework::TensorCopySync(tensor, expected_place, &tmp_tensor);
      return MakePtenScalar(tmp_tensor);
    } else {
      return MakePtenScalar(tensor);
    }
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupport casting input `%s` type to Scalar when call pt "
        "kernel.",
        framework::ToTypeName(variable.Type())));
  }
}

140
pten::ScalarArray MakePtenScalarArray(const paddle::framework::Tensor& src) {
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
  if (src.type() == paddle::framework::proto::VarType::INT64) {
    return {src.data<int64_t>(), src.numel()};
  } else if (src.type() == paddle::framework::proto::VarType::INT32) {
    return {src.data<int32_t>(), src.numel()};
  } else {
    PADDLE_THROW(paddle::platform::errors::InvalidArgument(
        "Data type error. When cast a LoDTensor to ScalarArray, "
        "the data type of LoDTensor must be int32 or int64, "
        "but now data type is %s.",
        src.type()));
  }
}

pten::ScalarArray MakePtenScalarArrayFromVar(
    const framework::Variable& variable) {
  auto expected_place = pten::TransToFluidPlace(pten::Backend::CPU);
  if (variable.IsType<framework::LoDTensor>()) {
    const auto& tensor = variable.Get<framework::LoDTensor>();
    if (!platform::is_same_place(tensor.place(), expected_place)) {
      framework::LoDTensor tmp_tensor;
      framework::TensorCopySync(tensor, expected_place, &tmp_tensor);
      return MakePtenScalarArray(tmp_tensor);
    } else {
      return MakePtenScalarArray(tensor);
    }
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupport casting input `%s` type to ScalarArray when call pt "
        "kernel.",
        framework::ToTypeName(variable.Type())));
  }
}

pten::ScalarArray MakePtenScalarArrayFromVarList(
    const std::vector<framework::Variable*>& variable_list) {
  if (variable_list.size() == 0) {
    return pten::ScalarArray();
  }
  auto expected_place = pten::TransToFluidPlace(pten::Backend::CPU);

  paddle::framework::proto::VarType::Type data_type;
  auto* first_var = variable_list.front();
  if (first_var->IsType<framework::LoDTensor>()) {
    const auto& tensor = first_var->Get<framework::LoDTensor>();
    data_type = tensor.type();
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupport casting input `%s` type to VectorTensor when call pt "
        "kernel.",
        framework::ToTypeName(first_var->Type())));
  }

  std::vector<int64_t> vector_data;
  vector_data.reserve(variable_list.size());

  if (data_type == paddle::framework::proto::VarType::INT64) {
    for (auto* var : variable_list) {
      if (var->IsType<framework::LoDTensor>()) {
        const auto& tensor = var->Get<framework::LoDTensor>();
        if (!platform::is_same_place(tensor.place(), expected_place)) {
          framework::LoDTensor tmp_tensor;
          framework::TensorCopySync(tensor, expected_place, &tmp_tensor);
          vector_data.push_back(*tmp_tensor.data<int64_t>());
        } else {
          vector_data.push_back(*tensor.data<int64_t>());
        }
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupport casting input `%s` type to VectorTensor when call pt "
            "kernel.",
            framework::ToTypeName(var->Type())));
      }
    }

  } else if (data_type == paddle::framework::proto::VarType::INT32) {
    for (auto* var : variable_list) {
      if (var->IsType<framework::LoDTensor>()) {
        const auto& tensor = var->Get<framework::LoDTensor>();
        if (!platform::is_same_place(tensor.place(), expected_place)) {
          framework::LoDTensor tmp_tensor;
          framework::TensorCopySync(tensor, expected_place, &tmp_tensor);
          vector_data.push_back(*tmp_tensor.data<int32_t>());
        } else {
          vector_data.push_back(*tensor.data<int32_t>());
        }
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupport casting input `%s` type to VectorTensor when call pt "
            "kernel.",
            framework::ToTypeName(var->Type())));
      }
    }
  } else {
    PADDLE_THROW(paddle::platform::errors::InvalidArgument(
        "Data type error. When cast a LoDTensor to VectorTensor, "
        "the data type of LoDTensor must be int32 or int64, "
        "but now data type is %s.",
        data_type));
  }

  return {vector_data};
}

244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
std::unique_ptr<pten::TensorBase> MakePtenTensorBaseFromVar(
    const framework::Variable& variable, const pten::TensorArgDef& arg_def) {
  auto expected_place = pten::TransToFluidPlace(arg_def.backend);

  if (variable.IsType<framework::LoDTensor>()) {
    const auto& tensor = variable.Get<framework::LoDTensor>();
    if (!platform::is_same_place(tensor.place(), expected_place)) {
      framework::LoDTensor tmp_tensor;
      framework::TensorCopySync(tensor, expected_place, &tmp_tensor);
      return MakePtenDenseTensor(tmp_tensor);
    } else {
      return MakePtenDenseTensor(tensor);
    }
  } else if (variable.IsType<framework::SelectedRows>()) {
    // TODO(chenweihang): now we don't deal with row and height
    // by xiaowei's advice
    const auto& tensor = variable.Get<framework::SelectedRows>();
    if (!platform::is_same_place(tensor.value().place(), expected_place)) {
      framework::Tensor tmp_tensor;
263 264
      paddle::framework::TensorCopySync(
          tensor.value(), expected_place, &tmp_tensor);
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
      // TODO(chenweihang): adapt SelectedRows by xiaowei's design
      return MakePtenDenseTensor(tmp_tensor);
    } else {
      return MakePtenDenseTensor(tensor.value());
    }
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupported shared input `%s` type now when call pt kernel.",
        framework::ToTypeName(variable.Type())));
  }
  return {};
}

std::unique_ptr<pten::TensorBase> MakePtenTensorBaseFromVar(
    framework::Variable* variable, const pten::TensorArgDef& arg_def) {
  // mutable_data before run kernel, to avoid share output form
  // KernelContext to original tensor
  if (variable->template IsType<framework::LoDTensor>()) {
    auto* tensor = variable->template GetMutable<framework::LoDTensor>();
284
    return MakePtenDenseTensor(*tensor, arg_def);
285 286 287 288
  } else if (variable->template IsType<framework::SelectedRows>()) {
    auto* tensor = variable->template GetMutable<framework::SelectedRows>();
    // TODO(chenweihang): adapt SelectedRows by xiaowei's design,
    // here the row and height will lost in output!
289
    return MakePtenDenseTensor(tensor->value(), arg_def);
290 291 292 293 294 295 296 297
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupported shared output `%s` type now when call pt kernel.",
        framework::ToTypeName(variable->Type())));
  }
  return {};
}

298
void MovesStorageBase(pten::DenseTensor* src, paddle::framework::Tensor* dst) {
299 300 301 302 303 304 305 306
  PADDLE_ENFORCE_NOT_NULL(
      src,
      platform::errors::InvalidArgument(
          "The source DenseTensor is nullptr when move storage."));
  PADDLE_ENFORCE_NOT_NULL(
      dst,
      platform::errors::InvalidArgument(
          "The destination Tensor is nullptr when move storage."));
307
  dst->ResizeAndAllocate(src->dims());
308
  dst->set_type(pten::TransToProtoVarType(src->dtype()));
309 310
  auto storage = src->MoveMemoryHolder();
  dst->ResetHolderWithType(storage, pten::TransToProtoVarType(src->dtype()));
311
  dst->set_offset(src->meta().offset);
312 313
}

314 315
void MovesStorage(pten::DenseTensor* src, paddle::framework::Tensor* dst) {
  MovesStorageBase(src, static_cast<paddle::framework::Tensor*>(dst));
316
  SetLoD(dst->mutable_lod(), src->lod());
317 318
}

319
void SharesStorageBase(pten::DenseTensor* src, paddle::framework::Tensor* dst) {
320 321 322 323 324 325 326 327
  PADDLE_ENFORCE_NOT_NULL(
      src,
      platform::errors::InvalidArgument(
          "The source DenseTensor is nullptr when move allocation."));
  PADDLE_ENFORCE_NOT_NULL(
      dst,
      platform::errors::InvalidArgument(
          "The destination Tensor is nullptr when move allocation."));
328
  dst->ResizeAndAllocate(src->dims());
329
  dst->ResetHolderWithType(src->Holder(),
330
                           pten::TransToProtoVarType(src->dtype()));
331
  dst->set_offset(src->meta().offset);
332 333
}

334 335
void SharesStorage(pten::DenseTensor* src, paddle::framework::Tensor* dst) {
  SharesStorageBase(src, static_cast<paddle::framework::Tensor*>(dst));
336 337 338
  SetLoD(dst->mutable_lod(), src->lod());
}

339 340
void ReMakePtenDenseTensorBase(const paddle::framework::Tensor& src,
                               pten::DenseTensor* dst) {
341
  VLOG(3) << "ReMakePtenDenseTensor based Tensor.";
342 343
  auto* meta = pten::CompatibleDenseTensorUtils::GetMutableMeta(dst);
  meta->dims = src.dims();
344
  meta->dtype = pten::TransToPtenDataType(src.type());
345
  meta->layout = src.layout();
346
  meta->offset = src.offset();
347
  dst->ResetHolder(src.Holder());
348 349
}

350
void ReMakePtenDenseTensor(const paddle::framework::Tensor& src,
351 352
                           pten::DenseTensor* dst) {
  auto* meta = pten::CompatibleDenseTensorUtils::GetMutableMeta(dst);
353
  SetLoD(&meta->lod, src.lod());
354 355
  ReMakePtenDenseTensorBase(static_cast<const paddle::framework::Tensor&>(src),
                            dst);
356 357
}

358 359 360
void ReMakePtenDenseTensorByArgDefBase(const paddle::framework::Tensor& src,
                                       const pten::TensorArgDef& arg_def,
                                       pten::DenseTensor* dst) {
361
  VLOG(3) << "ReMakePtenDenseTensor based Tensor and TensorArgDef.";
362 363
  auto* meta = pten::CompatibleDenseTensorUtils::GetMutableMeta(dst);
  meta->dims = src.dims();
364
  meta->dtype = arg_def.dtype;
365
  meta->layout = src.layout();
366
  meta->offset = src.offset();
367

368 369
  if (src.IsInitialized() &&
      src.place() == pten::TransToFluidPlace(arg_def.backend)) {
370
    dst->ResetHolder(src.Holder());
371
  } else {
372 373
    // This does not affect the correctness, and will be modified immediately.
    // dst->mutable_data(pten::TransToFluidPlace(arg_def.backend));
374
  }
375 376
}

377
void ReMakePtenDenseTensorByArgDef(const paddle::framework::Tensor& src,
378 379 380 381
                                   const pten::TensorArgDef& arg_def,
                                   pten::DenseTensor* dst) {
  auto* meta = pten::CompatibleDenseTensorUtils::GetMutableMeta(dst);
  SetLoD(&meta->lod, src.lod());
382
  ReMakePtenDenseTensorByArgDefBase(
383 384 385
      static_cast<const paddle::framework::Tensor&>(src), arg_def, dst);
}

386 387 388 389 390 391
void ReMakePtenDenseTensorFromVar(const framework::Variable& variable,
                                  const pten::TensorArgDef& arg_def,
                                  pten::DenseTensor* dst) {
  auto expected_place = pten::TransToFluidPlace(arg_def.backend);
  if (variable.IsType<framework::LoDTensor>()) {
    const auto& tensor = variable.Get<framework::LoDTensor>();
Y
YuanRisheng 已提交
392 393 394 395 396 397
    // check input dtype before ReMakePtenDenseTensor
    PADDLE_ENFORCE(
        (arg_def.dtype == pten::TransToPtenDataType(tensor.type())),
        paddle::platform::errors::InvalidArgument(
            "The type of input data is diffrent from the type of the "
            "argument's definition in kernel."));
398 399 400
    if (!platform::is_same_place(tensor.place(), expected_place)) {
      framework::LoDTensor tmp_tensor;
      framework::TensorCopySync(tensor, expected_place, &tmp_tensor);
401
      ReMakePtenDenseTensorByArgDef(tmp_tensor, arg_def, dst);
402
    } else {
403
      ReMakePtenDenseTensorByArgDef(tensor, arg_def, dst);
404 405 406 407 408
    }
  } else if (variable.IsType<framework::SelectedRows>()) {
    // TODO(chenweihang): now we don't deal with row and height
    // by xiaowei's advice
    const auto& tensor = variable.Get<framework::SelectedRows>();
Y
YuanRisheng 已提交
409 410 411 412 413
    PADDLE_ENFORCE(
        (arg_def.dtype == pten::TransToPtenDataType(tensor.value().type())),
        paddle::platform::errors::InvalidArgument(
            "The type of input data is diffrent from the type of the "
            "argument's definition in kernel."));
414 415
    if (!platform::is_same_place(tensor.value().place(), expected_place)) {
      framework::Tensor tmp_tensor;
416 417
      paddle::framework::TensorCopySync(
          tensor.value(), expected_place, &tmp_tensor);
418
      // TODO(chenweihang): adapt SelectedRows by xiaowei's design
419
      ReMakePtenDenseTensorByArgDef(tmp_tensor, arg_def, dst);
420
    } else {
421
      ReMakePtenDenseTensorByArgDef(tensor.value(), arg_def, dst);
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
    }
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupported shared input `%s` type now when call pt kernel.",
        framework::ToTypeName(variable.Type())));
  }
}

void ReMakePtenDenseTensorFromVar(framework::Variable* variable,
                                  const pten::TensorArgDef& arg_def,
                                  pten::DenseTensor* dst) {
  // mutable_data before run kernel, to avoid share output form
  // KernelContext to original tensor
  if (variable->template IsType<framework::LoDTensor>()) {
    auto* tensor = variable->template GetMutable<framework::LoDTensor>();
437
    ReMakePtenDenseTensorByArgDef(*tensor, arg_def, dst);
438 439 440 441
  } else if (variable->template IsType<framework::SelectedRows>()) {
    auto* tensor = variable->template GetMutable<framework::SelectedRows>();
    // TODO(chenweihang): adapt SelectedRows by xiaowei's design,
    // here the row and height will lost in output!
442
    ReMakePtenDenseTensorByArgDef(tensor->value(), arg_def, dst);
443 444 445 446 447 448 449
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupported shared output `%s` type now when call pt kernel.",
        framework::ToTypeName(variable->Type())));
  }
}

450 451 452 453 454 455 456 457 458 459 460 461
static bool IsSameAllocation(const std::shared_ptr<memory::Allocation>& a,
                             const std::shared_ptr<memory::Allocation>& b) {
  return a->ptr() == b->ptr() && a->size() == b->size() &&
         platform::is_same_place(a->place(), b->place());
}

void MakeVariableFromPtenTensor(pten::DenseTensor* src,
                                framework::Variable* variable) {
  if (variable->IsType<framework::LoDTensor>()) {
    auto* tensor = variable->GetMutable<framework::LoDTensor>();

    auto dtype = pten::TransToProtoVarType(src->dtype());
462
    tensor->ResizeAndAllocate(src->dims());
463 464 465 466
    SetLoD(tensor->mutable_lod(), src->lod());

    if (!tensor->IsInitialized() ||
        (tensor->IsInitialized() &&
467 468
         !IsSameAllocation(tensor->Holder(), src->Holder()))) {
      tensor->ResetHolderWithType(std::move(src->Holder()), dtype);
469 470 471 472 473 474 475 476 477 478 479 480 481
    } else {
      // Even the pten tensor and Variable have the same Alloctation (both have
      // the same pointer address, same size and same place)
      // but there is possible that they do not have the same data_type.
      // so, here we set the variable's type with the pten tensor dtype.
      tensor->set_type(dtype);
    }

  } else if (variable->IsType<framework::SelectedRows>()) {
    auto* tensor = variable->GetMutable<framework::SelectedRows>();
    auto dtype = pten::TransToProtoVarType(src->dtype());

    if (!tensor->value().IsInitialized()) {
482 483
      tensor->mutable_value()->ResetHolderWithType(std::move(src->Holder()),
                                                   dtype);
484 485 486 487 488 489 490 491
    }
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupported shared input `%s` type now when call pt kernel.",
        framework::ToTypeName(variable->Type())));
  }
}

492 493
}  // namespace experimental
}  // namespace paddle