test_gumbel_softmax_op.py 7.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
import unittest
import numpy as np
from op_test import OpTest
import paddle.fluid.core as core
import paddle
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard
paddle.enable_static()


class TestGumbelSoftmaxOp(OpTest):
    def init_attrs(self):
        self.shape = [20, 10]
        self.attrs = {"hard": True, "axis": -1}
        self.count_expected = 20
        self.dtype = "float64"

    def verify_output(self, outs):
        out_np = np.array(outs[0])
        out_np.shape = self.shape
        self.assertTrue(list(out_np.shape) == self.shape)
        self.assertEqual(out_np.sum(), self.count_expected)

    def setUp(self):
        self.op_type = "gumbel_softmax"
        self.init_attrs()
        np.random.seed(0)
        x = np.random.uniform(0.1, 1, self.shape).astype(self.dtype)
        out = np.zeros(self.shape).astype(self.dtype)
        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_output(self):
        self.check_output_customized(self.verify_output)

    def test_check_grad(self):
        self.check_grad(["X"], "Out")


class TestGumbelSoftmaxOp2(TestGumbelSoftmaxOp):
    def init_attrs(self):
        self.shape = [20, 10]
        self.attrs = {"hard": True, "axis": 0}
        self.count_expected = 10
        self.dtype = "float64"


class TestGumbelSoftmaxOp3(TestGumbelSoftmaxOp):
    def init_attrs(self):
        self.shape = [100]
        self.attrs = {"hard": True, "axis": -1}
        self.count_expected = 1
        self.dtype = "float64"


class TestGumbelSoftmaxOp4(TestGumbelSoftmaxOp):
    def init_attrs(self):
        self.shape = [20, 10, 5]
        self.attrs = {"hard": True, "axis": -1}
        self.count_expected = 200
        self.dtype = "float64"


class TestGumbelSoftmaxOp5(TestGumbelSoftmaxOp):
    def init_attrs(self):
        self.shape = [20, 10, 5]
        self.attrs = {"hard": True, "axis": 1}
        self.count_expected = 100
        self.dtype = "float64"


class TestGumbelSoftmaxOpSampleDistribution(OpTest):
    def softmax(self, x):
        x_row_max = x.max(axis=-1)
        x_row_max = x_row_max.reshape(list(x.shape)[:-1] + [1])
        x = x - x_row_max
        x_exp = np.exp(x)
        x_exp_row_sum = x_exp.sum(axis=-1).reshape(list(x.shape)[:-1] + [1])
        softmax = x_exp / x_exp_row_sum
        return softmax

    def init_attrs(self):
        self.shape = [100, 3]
        self.attrs = {"hard": True, "axis": -1}
        self.counts = np.zeros(self.shape).astype(self.dtype)
        self._cpu_only = True

    def accumulate_output(self, outs):
        out_np = np.array(outs)
        out_np = out_np.reshape(self.shape)
        self.counts = np.sum(out_np, axis=0)

    def setUp(self):
        self.op_type = "gumbel_softmax"
        self.init_attrs()
        single_x = np.array([0.2, 0.3, 0.5])
        batch_x = np.ones(self.shape) * single_x
        out = np.zeros(self.shape).astype(self.dtype)
        self.probs = self.softmax(single_x)
        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(batch_x)}
        self.outputs = {'Out': out}

    def test_check_output(self):
        self.check_output_customized(self.accumulate_output)
        # Experiment should result in batch num .
        self.assertEqual(self.counts.sum(), self.shape[0])

        # Treat the probability from softmax as 
        # the probability of binomial distribution.
        # Samples from gumbel softmax meet this binomial distribution.
        # Construct statistics z for samples and 
        # z is approximately N(0,1) for unbiased count
        expected = self.probs * self.shape[0]
        z = (self.counts - expected) / np.sqrt((expected * (1 - self.probs)))
        # A (lazy) approximate 99% two-sided test:
        # occurs with prob alpha~>=0.01 if unbiased
        self.assertLess(np.max(np.abs(z)).item(), 2.58)

    def test_check_grad(self):
        self.check_grad(["X"], "Out")


class TestGumbelSoftmaxOpGrad(unittest.TestCase):
    def init_attrs(self):
        self.shape = [20, 10]
        self.dtype = "float64"

    def setUp(self):
        self.init_attrs()
        np.random.seed(0)
        self.x_np = np.random.uniform(0.1, 1, self.shape).astype(self.dtype)

    def test_dygraph_check(self):
        paddle.disable_static()
        x_hard = paddle.to_tensor(self.x_np, stop_gradient=False)
        x_soft = paddle.to_tensor(self.x_np, stop_gradient=False)
        out_hard = paddle.nn.functional.gumbel_softmax(x_hard, hard=True)
        out_soft = paddle.nn.functional.gumbel_softmax(x_soft, hard=False)

        out_hard.sum().backward()
        out_soft.sum().backward()

        self.assertEqual(
            np.allclose(x_hard.grad.numpy(), x_soft.grad.numpy()), True)
        paddle.enable_static()


class TestGumbelSoftmaxAPI(unittest.TestCase):
    def setUp(self):
        self.x_shape = [2, 3, 4, 5]
        self.x = np.random.uniform(-1., 1., self.x_shape).astype(np.float32)
        self.count_expected = 24
        self.place = paddle.CUDAPlace(0) \
            if paddle.fluid.core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_check_api(self):
        # test static api
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.fluid.data(name='x', shape=self.x_shape)
            y = paddle.nn.functional.gumbel_softmax(x, hard=True)
            exe = paddle.static.Executor(self.place)
            out = exe.run(feed={'x': self.x}, fetch_list=[y])
            out_np = np.array(out[0])
        self.assertEqual(out_np.sum(), self.count_expected)

        # test dygrapg api
        paddle.disable_static()
        x = paddle.to_tensor(self.x)
        y = paddle.nn.functional.gumbel_softmax(x, hard=True)
        out_np = np.array(y)
        self.assertEqual(out_np.sum(), self.count_expected)
        paddle.enable_static()


class TestGumbelSoftmaxOpError(unittest.TestCase):
    def test_errors(self):
        paddle.disable_static()

        def test_Variable():
            x1 = fluid.create_lod_tensor(
                np.zeros((100, 784)), [[10, 10, 10, 70]], fluid.CPUPlace())
            paddle.nn.functional.gumbel_softmax(x1)

        self.assertRaises(ValueError, test_Variable)

        def test_Variable2():
            x1 = np.zeros((100, 784))
            paddle.nn.functional.gumbel_softmax(x1)

        self.assertRaises(ValueError, test_Variable2)

        def test_argument1():
            x = paddle.to_tensor([0.2, 0.3, 0.4])
            paddle.nn.functional.gumbel_softmax(x, temperature=-1)

        self.assertRaises(ValueError, test_argument1)

        def test_argument2():
            x = paddle.to_tensor([0.2, 0.3, 0.4])
            paddle.nn.functional.gumbel_softmax(x, axis=1.1)

        self.assertRaises(ValueError, test_argument2)

        paddle.enable_static()

        def test_dtype():
            with paddle.static.program_guard(paddle.static.Program()):
                x_int32 = paddle.fluid.data(
                    name='x_int32', shape=[2, 3], dtype='int32')
                paddle.nn.functional.gumbel_softmax(x_int32)

        self.assertRaises(TypeError, test_dtype)


if __name__ == '__main__':
    unittest.main()