elementwise_mul_op.h 6.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"

namespace paddle {
namespace operators {
/*
 * Out = X ⊙ Y
 * 1. shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
 *    pre=2, n=3*4, post=5
 * 2. shape(X) = (2, 3, 4, 5), shape(Y) = (4,5)
 *    pre=2*3, n=4*5, post=1
 */

inline void get_mid_dims(const framework::DDim& x_dims,
                         const framework::DDim& y_dims, const int axis,
                         int& pre, int& n, int& post) {
  pre = 1;
  n = 1;
  post = 1;
  for (int i = 0; i < axis; ++i) {
    pre *= x_dims[i];
  }

  for (int i = 0; i < y_dims.size(); ++i) {
    PADDLE_ENFORCE_EQ(x_dims[i + axis], y_dims[i],
                      "Broadcast dimension mismatch.");
    n *= y_dims[i];
  }

  for (int i = axis + y_dims.size(); i < x_dims.size(); ++i) {
    post *= x_dims[i];
  }
}

template <typename Place, typename T>
class ElementWiseMulKernel : public framework::OpKernel {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    using Tensor = framework::Tensor;

    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
    auto* z = ctx.Output<Tensor>("Out");
    z->mutable_data<T>(ctx.GetPlace());

    auto x_e = framework::EigenVector<T>::Flatten(*x);
    auto y_e = framework::EigenVector<T>::Flatten(*y);
    auto z_e = framework::EigenVector<T>::Flatten(*z);

    auto x_dims = x->dims();
    auto y_dims = y->dims();
    PADDLE_ENFORCE_GE(x_dims.size(), y_dims.size(),
                      "Rank of first input must >= rank of second input.")

    if (x_dims == y_dims || product(y_dims) == 1) {
      z_e.device(ctx.GetEigenDevice<Place>()) = x_e * y_e;
      return;
    }

    int axis = ctx.Attr<int>("axis");
    axis = (axis == -1 ? x_dims.size() - y_dims.size() : axis);
    PADDLE_ENFORCE(axis >= 0 && axis < x_dims.size(),
                   "Axis should be in range [0, x_dims)");

    int pre, n, post;
    get_mid_dims(x_dims, y_dims, axis, pre, n, post);
    if (post == 1) {
      auto y_bcast = y_e.reshape(Eigen::DSizes<int, 2>(1, n))
                         .broadcast(Eigen::DSizes<int, 2>(pre, 1))
                         .reshape(Eigen::DSizes<int, 1>(x_e.size()));
      z_e.device(ctx.GetEigenDevice<Place>()) = x_e * y_bcast;
      return;
    } else {
      auto y_bcast = y_e.reshape(Eigen::DSizes<int, 3>(1, n, 1))
                         .broadcast(Eigen::DSizes<int, 3>(pre, 1, post))
                         .reshape(Eigen::DSizes<int, 1>(x_e.size()));
      z_e.device(ctx.GetEigenDevice<Place>()) = x_e * y_bcast;
      return;
    }
  }
};

template <typename Place, typename T>
class ElementWiseMulGradKernel : public framework::OpKernel {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    using Tensor = framework::Tensor;

    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));

    auto x_e = framework::EigenVector<T>::Flatten(*x);
    auto y_e = framework::EigenVector<T>::Flatten(*y);
    auto dout_e = framework::EigenVector<T>::Flatten(*dout);

    auto x_dims = x->dims();
    auto y_dims = y->dims();

    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
    if (dx) {
      dx->mutable_data<T>(ctx.GetPlace());
    }
    if (dy) {
      dy->mutable_data<T>(ctx.GetPlace());
    }

    if (x_dims == y_dims || product(y_dims) == 1) {
      if (dx) {
        auto dx_e = framework::EigenVector<T>::Flatten(*dx);
        dx_e.device(ctx.GetEigenDevice<Place>()) = dout_e * y_e;
      }

      if (dy) {
        auto dy_e = framework::EigenVector<T>::Flatten(*dy);
        dy_e.device(ctx.GetEigenDevice<Place>()) = x_e * dout_e;
      }
      return;
    }

    int axis = ctx.Attr<int>("axis");
    axis = (axis == -1 ? x_dims.size() - y_dims.size() : axis);

    int pre, n, post;
    get_mid_dims(x_dims, y_dims, axis, pre, n, post);

    // TODO(gongweibao): wrap reshape to a function.
    if (post == 1) {
      auto y_e_bcast = y_e.reshape(Eigen::DSizes<int, 2>(1, n))
                           .broadcast(Eigen::DSizes<int, 2>(pre, 1))
                           .reshape(Eigen::DSizes<int, 1>(x_e.size()));
      if (dx) {
        auto dx_e = framework::EigenVector<T>::Flatten(*dx);
        dx_e.device(ctx.GetEigenDevice<Place>()) = dout_e * y_e_bcast;
      }

      if (dy) {
        auto dy_e = framework::EigenVector<T>::Flatten(*dy);
        dy_e.device(ctx.GetEigenDevice<Place>()) =
            (x_e * dout_e)
                .reshape(Eigen::DSizes<int, 2>(pre, n))
                .sum(Eigen::array<int, 1>{{0}});
      }
      return;
    } else {
      auto y_e_bcast = y_e.reshape(Eigen::DSizes<int, 3>(1, n, 1))
                           .broadcast(Eigen::DSizes<int, 3>(pre, 1, post))
                           .reshape(Eigen::DSizes<int, 1>(x_e.size()));
      if (dx) {
        auto dx_e = framework::EigenVector<T>::Flatten(*dx);
        dx_e.device(ctx.GetEigenDevice<Place>()) = dout_e * y_e_bcast;
      }

      if (dy) {
        auto dy_e = framework::EigenVector<T>::Flatten(*dy);
        dy_e.device(ctx.GetEigenDevice<Place>()) =
            (x_e * dout_e)
                .reshape(Eigen::DSizes<int, 3>(pre, n, post))
                .sum(Eigen::array<int, 2>{{0, 2}});
      }
      return;
    }
  }
};

}  // namespace operators
}  // namespace paddle