row_conv_op.cc 9.9 KB
Newer Older
L
Luo Tao 已提交
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
S
Siddharth Goyal 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
S
Siddharth Goyal 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
S
Siddharth Goyal 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
S
Siddharth Goyal 已提交
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78

#include "paddle/operators/row_conv_op.h"
#include "paddle/framework/eigen.h"

namespace paddle {
namespace operators {

using LoDTensor = framework::LoDTensor;
using framework::Tensor;

template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;

class RowConvOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of RowConvOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Filter"),
                   "Input(Filter) of RowConvOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of RowConvOp should not be null.");

    auto x_dims = ctx->GetInputDim("X");
    auto filter_dims = ctx->GetInputDim("Filter");
    PADDLE_ENFORCE_EQ(x_dims.size(), 2, "Input(X)'s rank should be 2.");
    PADDLE_ENFORCE_EQ(filter_dims.size(), 2, "Input(Y)'s rank should be 2.");
    PADDLE_ENFORCE_EQ(
        x_dims[1], filter_dims[1],
        "The 2nd dimension of Input(X) and Input(Filter) should be same.");
    ctx->SetOutputDim("Out", x_dims);
    ctx->ShareLoD("X", "Out");
  }
};

class RowConvGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Filter"),
                   "Input(Filter) should not be null.");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Gradient of output(Out) should not be null.");

    auto x_grad_name = framework::GradVarName("X");
    if (ctx->HasOutput(x_grad_name)) {
      auto x_dims = ctx->GetInputDim("X");
      ctx->SetOutputDim(x_grad_name, x_dims);
    }

    auto filter_grad_name = framework::GradVarName("Filter");
    if (ctx->HasOutput(filter_grad_name)) {
      auto filter_dims = ctx->GetInputDim("Filter");
      ctx->SetOutputDim(filter_grad_name, filter_dims);
    }
  }
};

class RowConvOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
79
  RowConvOpMaker(OpProto *proto, OpAttrChecker *op_checker)
S
Siddharth Goyal 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
      : framework::OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X",
             "(LoDTensor), the input(X) is a LodTensor, which supports "
             "variable time-length input sequences. The underlying tensor "
             "in this LoDTensor is a matrix with shape (T x N), where T "
             "is the total time steps in this mini-batch and N is the input "
             "data dimension.");
    AddInput("Filter",
             "(Tensor), the input(Filter) is a learnable parameter. It "
             "is a 2-D tensor with shape (future_context x N), where, "
             "future_context is the future context length and N is the data "
             "dimension.");
    AddOutput("Out",
              "(LoDTensor), the output(Out) is a LodTensor, which supports "
              "variable time-length input sequences. The underlying tensor "
              "in this LodTensor is a matrix with shape T x N, i.e., the "
              "same shape as X.");
    AddComment(R"DOC(
Row-convolution Operator.

The row convolution is called lookahead convolution.  This operator was 
introduced in the following paper for DeepSpeech2:
http://www.cs.cmu.edu/~dyogatam/papers/wang+etal.iclrworkshop2016.pdf 

The main motivation is that a bidirectional RNN, useful in DeepSpeech 
like speech models, learns representation for a sequence by performing a 
forward and a backward pass through the entire sequence. However, unlike 
unidirectional RNNs, bidirectional RNNs are challenging to deploy in an online
and low-latency setting. The lookahead convolution incorporates information 
from future subsequences in a computationally efficient manner to improve 
unidirectional recurrent neural networks. The row convolution operator is 
different from the 1D sequence convolution, and is computed as follows:

Given an input sequence $in$ of length $t$ and input dimension $d$, 
and a filter ($W$) of size $context \times d$, 
the output sequence is convolved as:

$$
out_{i, :} = \sum_{j=i}^{i + context} in_{j,:} \dot W_{i-j, :}
$$

)DOC");
  }
};

template <typename T>
Q
QI JUN 已提交
126 127
class RowConvKernel<platform::CPUDeviceContext, T>
    : public framework::OpKernel<T> {
S
Siddharth Goyal 已提交
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
 public:
  void Compute(const framework::ExecutionContext &context) const override {
    auto *x = context.Input<LoDTensor>("X");
    auto *filter = context.Input<Tensor>("Filter");
    auto *out = context.Output<LoDTensor>("Out");

    out->mutable_data<T>(context.GetPlace());

    auto batch_indices = x->lod()[0];
    auto input_dim = x->dims()[1];  // 'in' is of size T x N
    size_t num_sequence = batch_indices.size() - 1;

    auto future_context = filter->dims()[0];
    auto weights = EigenMatrix<T>::From(*filter);

    for (size_t i = 0; i < num_sequence; i++) {
      int start = static_cast<int>(batch_indices[i]);
      int end = static_cast<int>(batch_indices[i + 1]);
      int current_timesteps = end - start;
      Tensor cur_input_sequence =
          x->Slice(start, end);  // Current input sequence
      Tensor cur_output_sequence =
          out->Slice(start, end);  // Current output sequence
      auto cip_seq = EigenMatrix<T>::From(cur_input_sequence);
      auto cot_seq = EigenMatrix<T>::From(cur_output_sequence);

      for (int k = 0; k < current_timesteps;
           k++) {  // For different time steps in the same sequence
        for (int w = 0; (w < future_context) && ((k + w) < current_timesteps);
             w++) {
          for (int d = 0; d < input_dim; d++) {
            if (w == 0) {
              cot_seq(k, d) = weights(w, d) * cip_seq(k + w, d);
            } else {
              cot_seq(k, d) += weights(w, d) * cip_seq(k + w, d);
            }
          }
        }
      }
    }
  }
};

template <typename T>
Q
QI JUN 已提交
172 173
class RowConvGradKernel<platform::CPUDeviceContext, T>
    : public framework::OpKernel<T> {
S
Siddharth Goyal 已提交
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
 public:
  void Compute(const framework::ExecutionContext &context) const override {
    auto *x = context.Input<LoDTensor>("X");
    auto *filter = context.Input<Tensor>("Filter");
    auto *d_out = context.Input<LoDTensor>(framework::GradVarName("Out"));
    auto *dx = context.Output<LoDTensor>(framework::GradVarName("X"));
    auto *d_filter = context.Output<Tensor>(framework::GradVarName("Filter"));

    auto input_dim = x->dims()[1];  // 'x' is of size T x N
    auto batch_indices = x->lod()[0];
    size_t num_sequence = batch_indices.size() - 1;
    auto future_context = filter->dims()[0];

    if (d_filter) {
      d_filter->mutable_data<T>(context.GetPlace());
      auto dweights =
          EigenMatrix<T>::From(*d_filter);  // Gradient of weight matrix
      dweights.setZero();

      for (size_t i = 0; i < num_sequence; i++) {  // For different sequences
        int start = static_cast<int>(batch_indices[i]);
        int end = static_cast<int>(batch_indices[i + 1]);

        Tensor cur_input = x->Slice(start, end);  // Current input sequence
        Tensor cur_doutput =
            d_out->Slice(start, end);  // Current output grad sequence

        auto cur_ip = EigenMatrix<T>::From(cur_input);
        auto cur_dout = EigenMatrix<T>::From(cur_doutput);
        int current_timesteps = end - start;

        for (int k = 0; k < current_timesteps;
             k++) {  // For different time steps in the same sequence
          for (int w = 0; (w < future_context) && ((k + w) < current_timesteps);
               w++) {
            // For dweights (Updating the gradient of weight matrix)
            for (int d = 0; d < input_dim; d++) {
              dweights(w, d) += cur_ip(k + w, d) * cur_dout(k, d);
            }
          }
        }
      }
    }

    if (dx) {
      dx->mutable_data<T>(context.GetPlace());
      auto weights = EigenMatrix<T>::From(*filter);
      for (size_t i = 0; i < num_sequence; i++) {  // For different sequences
        int start = static_cast<int>(batch_indices[i]);
        int end = static_cast<int>(batch_indices[i + 1]);

        Tensor cur_doutput =
            d_out->Slice(start, end);  // Current output grad sequence
        Tensor cur_dinput =
            dx->Slice(start, end);  // Current input grad sequence

        auto cur_dout = EigenMatrix<T>::From(cur_doutput);
        auto cur_dip = EigenMatrix<T>::From(cur_dinput);
        cur_dip.setZero();
        int current_timesteps = end - start;

        for (int k = 0; k < current_timesteps;
             k++) {  // For different time steps in the same sequence
          for (int w = 0; (w < future_context) && ((k + w) < current_timesteps);
               w++) {
            // For dinput (Updating the gradient wrt input)
            for (int d = 0; d < input_dim; d++) {
              cur_dip(k + w, d) += weights(w, d) * cur_dout(k, d);
            }
          }
        }
      }
    }
  }
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP(row_conv, ops::RowConvOp, ops::RowConvOpMaker, row_conv_grad,
            ops::RowConvGradOp);
REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
256 257 258 259
    row_conv, ops::RowConvKernel<paddle::platform::CPUDeviceContext, float>);
REGISTER_OP_CPU_KERNEL(
    row_conv_grad,
    ops::RowConvGradKernel<paddle::platform::CPUDeviceContext, float>);