op_registry.h 4.5 KB
Newer Older
1
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15 16

#pragma once

17
#include "paddle/framework/grad_op_desc_maker.h"
18 19 20
#include "paddle/framework/op_info.h"
#include "paddle/framework/op_proto_maker.h"
#include "paddle/framework/operator.h"
Y
Yu Yang 已提交
21
#include "paddle/framework/var_type_inference.h"
22 23 24 25 26 27 28 29

namespace paddle {
namespace framework {
namespace details {

enum OpInfoFillType {
  kOperator = 0,
  kOpProtoAndCheckerMaker = 1,
Y
Yu Yang 已提交
30
  kGradOpDescMaker = 2,
31 32
  kVarTypeInference = 3,
  kShapeInference = 4
33 34 35 36 37 38 39 40 41 42 43
};

template <typename T>
struct OpInfoFillTypeID {
  static constexpr OpInfoFillType ID() {
    return std::is_base_of<OperatorBase, T>::value
               ? kOperator
               : (std::is_base_of<OpProtoAndCheckerMaker, T>::value
                      ? kOpProtoAndCheckerMaker
                      : (std::is_base_of<GradOpDescMakerBase, T>::value
                             ? kGradOpDescMaker
Y
Yu Yang 已提交
44 45
                             : (std::is_base_of<VarTypeInference, T>::value
                                    ? kVarTypeInference
46 47 48 49
                                    : (std::is_base_of<InferShapeBase, T>::value
                                           ? kShapeInference
                                           : static_cast<OpInfoFillType>(
                                                 -1)))));
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
  }
};

template <typename T, OpInfoFillType = OpInfoFillTypeID<T>::ID()>
struct OpInfoFiller;

template <size_t I, bool at_end, typename... ARGS>
class OperatorRegistrarRecursive;

template <size_t I, typename... ARGS>
class OperatorRegistrarRecursive<I, false, ARGS...> {
 public:
  using T = typename std::tuple_element<I, std::tuple<ARGS...>>::type;
  OperatorRegistrarRecursive(const char* op_type, OpInfo* info) {
    OpInfoFiller<T> fill;
    fill(op_type, info);
    constexpr auto size = sizeof...(ARGS);
    OperatorRegistrarRecursive<I + 1, I + 1 == size, ARGS...> reg(op_type,
                                                                  info);
    (void)(reg);
  }
};

template <size_t I, typename... ARGS>
class OperatorRegistrarRecursive<I, true, ARGS...> {
 public:
  OperatorRegistrarRecursive(const char* op_type, OpInfo* info) {}
};

template <typename T>
struct OpInfoFiller<T, kOperator> {
  void operator()(const char* op_type, OpInfo* info) const {
    info->creator_ = [](const std::string& type, const VariableNameMap& inputs,
                        const VariableNameMap& outputs,
                        const AttributeMap& attrs) {
      return new T(type, inputs, outputs, attrs);
    };
  }
};

template <typename T>
struct OpInfoFiller<T, kOpProtoAndCheckerMaker> {
  void operator()(const char* op_type, OpInfo* info) const {
93
    info->proto_ = new proto::OpProto;
94 95 96 97 98 99 100 101 102 103 104 105 106 107
    info->checker_ = new OpAttrChecker();
    auto maker = T(info->proto_, info->checker_);
    maker.Validate();
    info->proto_->set_type(op_type);
    PADDLE_ENFORCE(
        info->proto_->IsInitialized(),
        "Fail to initialize %s's OpProto, because %s is not initialized",
        op_type, info->proto_->InitializationErrorString());
  }
};

template <typename T>
struct OpInfoFiller<T, kGradOpDescMaker> {
  void operator()(const char* op_type, OpInfo* info) const {
108
    info->grad_op_maker_ = [](
Y
Yu Yang 已提交
109
        const OpDesc& fwd_op,
110
        const std::unordered_set<std::string>& no_grad_set,
Y
Yu Yang 已提交
111
        std::unordered_map<std::string, std::string>* grad_to_var,
Y
Yu Yang 已提交
112
        const std::vector<BlockDesc*>& grad_block) {
Y
Yu Yang 已提交
113
      T maker(fwd_op, no_grad_set, grad_to_var, grad_block);
114 115
      return maker();
    };
116 117
  }
};
Y
Yu Yang 已提交
118 119 120 121

template <typename T>
struct OpInfoFiller<T, kVarTypeInference> {
  void operator()(const char* op_type, OpInfo* info) const {
Y
Yu Yang 已提交
122
    info->infer_var_type_ = [](const OpDesc& fwd_op, BlockDesc* block) {
Y
Yu Yang 已提交
123 124 125 126 127 128
      T inference;
      inference(fwd_op, block);
    };
  }
};

129 130 131 132 133 134 135 136 137 138
template <typename T>
struct OpInfoFiller<T, kShapeInference> {
  void operator()(const char* op_type, OpInfo* info) const {
    info->infer_shape_ = [](InferShapeContext* ctx) {
      T inference;
      inference(ctx);
    };
  }
};

139 140 141 142
}  // namespace details

}  // namespace framework
}  // namespace paddle