process_group_custom.cc 17.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

W
Wen Sun 已提交
15
#include "paddle/fluid/distributed/collective/process_group_custom.h"
16

W
Wen Sun 已提交
17
#include "paddle/fluid/distributed/collective/common.h"
W
Wen Sun 已提交
18
#include "paddle/fluid/distributed/collective/custom_ccl_tools.h"
19
#include "paddle/fluid/distributed/collective/utils.h"
20 21 22
#include "paddle/fluid/memory/malloc.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/place.h"
23
#include "paddle/phi/api/lib/utils/allocator.h"
24
#include "paddle/phi/common/place.h"
25
#include "paddle/phi/core/distributed/check/static_check.h"
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102

DECLARE_bool(xccl_blocking_wait);

constexpr int64_t kWaitBlockTImeout = 10;

namespace paddle {
namespace distributed {

void SyncDefaultStream(
    const std::vector<Place>& places,
    std::vector<CustomEventManager>& cclEvents,                    // NOLINT
    std::vector<std::unique_ptr<CustomDeviceContext>>& dev_ctx) {  // NOLINT
  for (size_t i = 0; i < places.size(); ++i) {
    auto* default_ctx = static_cast<platform::CustomDeviceContext*>(
        platform::DeviceContextPool::Instance().Get(places[i]));
    cclEvents[i].Record(*dev_ctx[i]);
    cclEvents[i].Block(*default_ctx);
  }
}

std::shared_ptr<ProcessGroupCustom::CustomTask> ProcessGroupCustom::CreateTask(
    std::vector<Place> places,
    int rank,
    CommType comm_type,
    const std::vector<phi::DenseTensor>& inputs) {
  return std::make_shared<ProcessGroupCustom::CustomTask>(
      places, rank, comm_type, inputs);
}

ProcessGroupCustom::CustomTask::CustomTask(
    const std::vector<Place>& places,
    int rank,
    CommType CommType,
    const std::vector<phi::DenseTensor>& inputs)
    : Task(rank, inputs, CommType), places_(places) {
  control_events_.resize(places.size());
  cclComms_.resize(places.size());
}

ProcessGroupCustom::CustomTask::~CustomTask() {}

void ProcessGroupCustom::CustomTask::SetOutputs(
    std::vector<phi::DenseTensor>& outputs) {  // NOLINT
  outputs_ = std::make_shared<std::vector<phi::DenseTensor>>(outputs);
}

void ProcessGroupCustom::CustomTask::SynchronizeStreams() {
  for (size_t i = 0; i < places_.size(); ++i) {
    auto* default_ctx = static_cast<platform::CustomDeviceContext*>(
        platform::DeviceContextPool::Instance().Get(places_[i]));
    phi::DeviceGuard guard(default_ctx->GetPlace());
    phi::stream::Stream stream(default_ctx->GetPlace(), default_ctx->stream());
    stream.WaitEvent(control_events_[i].GetCustomEvent());
  }
}

bool ProcessGroupCustom::CustomTask::IsCompleted() {
  for (size_t i = 0; i < places_.size(); ++i) {
    if (!control_events_[i].Query()) {
      return false;
    }
  }

  return true;
}

bool ProcessGroupCustom::CustomTask::Wait(std::chrono::milliseconds timeout) {
  SynchronizeStreams();
  while (!IsCompleted()) {
    std::this_thread::sleep_for(std::chrono::milliseconds(kWaitBlockTImeout));
  }
  return true;
}

// Same as Wait
void ProcessGroupCustom::CustomTask::Synchronize() { Wait(kWaitTimeout); }

103 104 105 106 107 108
ProcessGroupCustom::ProcessGroupCustom(
    const std::shared_ptr<phi::distributed::Store>& store,
    const std::string& device_type,
    int rank,
    int size,
    int gid)
109 110 111
    : ProcessGroupWithoutStream(rank, size, gid),
      store_(store),
      device_type_(device_type) {}
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160

void ProcessGroupCustom::BroadcastUniqueCustomID(
    std::vector<phi::ccl::CCLRootId>& ccl_ids) {  // NOLINT
  if (rank_ == 0) {
    for (size_t i = 0; i < ccl_ids.size(); i++) {
      auto key = "ProcessGroupCustom/ccl_ids/" + std::to_string(i);
      store_->set(key, ccl_ids[i]);
    }
  } else {
    for (size_t i = 0; i < ccl_ids.size(); i++) {
      auto key = "ProcessGroupCustom/ccl_ids/" + std::to_string(i);
      ccl_ids[i] = store_->get(key);
    }
  }
}

// create CustomCCLManager cache for places_key
void ProcessGroupCustom::CreateCustomManagerCache(
    const std::string& places_key, const std::vector<Place>& places) {
  PADDLE_ENFORCE_EQ(places_key.empty(),
                    false,
                    platform::errors::PreconditionNotMet(
                        "Not able to create/get the HCCL Communicator since "
                        "the NPU place are not known"));
  const std::string device_type = places.back().GetDeviceType();

  std::vector<std::shared_ptr<CustomCCLCommManager>> ccl_comms;
  ccl_comms.resize(places.size());

  // using vector just for broadcast
  std::vector<phi::ccl::CCLRootId> ccl_ids;
  ccl_ids.resize(1);
  auto& ccl_id = ccl_ids.front();

  if (rank_ == 0) {
    phi::DeviceManager::CCLGetUniqueId(device_type, &ccl_id);
  }
  BroadcastUniqueCustomID(ccl_ids);

  VLOG(3) << "init custom ccl rank: " << rank_ << ", nranks: " << size_
          << ", place: " << places_key
          << ", custom ccl uniqueid: " << SerializeCustomCCLUniqueId(ccl_id);

  std::vector<std::unique_ptr<CustomDeviceContext>> dev_ctx;
  dev_ctx.resize(places.size());

  for (size_t i = 0; i < places.size(); ++i) {
    phi::DeviceGuard guard(places[i]);
    ccl_comms[i] = CustomCCLCommManager::Create(
R
risemeup1 已提交
161
        device_type, GetSize(), GetRank(), &ccl_id, new phi::ccl::CCLComm);
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
    dev_ctx[i].reset(new CustomDeviceContext(places[i]));
  }

  std::vector<CustomEventManager> events;
  events.resize(places.size());

  // These caches will be useful to process sync/wait/communicate
  places_to_events_.emplace(places_key, std::move(events));
  places_to_customcomm_.emplace(places_key, std::move(ccl_comms));
  places_to_ctx_.emplace(places_key, std::move(dev_ctx));
}

template <typename Fn>
std::shared_ptr<ProcessGroup::Task> ProcessGroupCustom::Collective(
    std::vector<phi::DenseTensor>& inputs,
    std::vector<phi::DenseTensor>& outputs,
    Fn fn,
    CommType op_type) {
  const auto places = GetPlaceList(inputs);
  const auto key = GetKeyFromPlaces(places);

  {
    std::lock_guard<std::mutex> lock(mutex_);
    if (places_to_customcomm_.find(key) == places_to_customcomm_.end()) {
      CreateCustomManagerCache(key, places);
    }
  }

  auto& ccl_comms = places_to_customcomm_[key];
  SyncDefaultStream(places, places_to_events_[key], places_to_ctx_[key]);
  auto task = CreateTask(places, rank_, op_type, inputs);
  task->SetOutputs(outputs);

  for (size_t i = 0; i < inputs.size(); ++i) {
    phi::DeviceGuard guard(places[i]);
    const auto& ccl_stream = places_to_ctx_[key][i]->stream();
    phi::stream::Stream stream(places[i], ccl_stream);
    fn(inputs[i], outputs[i], ccl_comms[i]->GetCustomCCLComm(), stream);
  }

  for (size_t i = 0; i < inputs.size(); ++i) {
    phi::DeviceGuard guard(places[i]);
    task->control_events_[i].Record(*places_to_ctx_[key][i]);
  }
  return task;
}

209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
void* XcclGetPointerByOffset(void* raw_pointer,
                             size_t offset,
                             experimental::DataType type) {
  if (type == experimental::DataType::FLOAT32) {
    return reinterpret_cast<void*>(reinterpret_cast<float*>(raw_pointer) +
                                   offset);
  } else if (type == experimental::DataType::FLOAT64) {
    return reinterpret_cast<void*>(reinterpret_cast<double*>(raw_pointer) +
                                   offset);
  } else if (type == experimental::DataType::INT32) {
    return reinterpret_cast<void*>(reinterpret_cast<int32_t*>(raw_pointer) +
                                   offset);
  } else if (type == experimental::DataType::INT64) {
    return reinterpret_cast<void*>(reinterpret_cast<int64_t*>(raw_pointer) +
                                   offset);
  } else if (type == experimental::DataType::FLOAT16) {
    return reinterpret_cast<void*>(reinterpret_cast<int16_t*>(raw_pointer) +
                                   offset);
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "This datatype in xccl is not supported."));
  }
  return nullptr;
}

234 235 236
std::shared_ptr<ProcessGroup::Task> ProcessGroupCustom::AllGather(
    phi::DenseTensor* out_tensor,
    const phi::DenseTensor& in_tensor,
237
    int64_t offset,
238
    int64_t numel,
239 240 241 242 243 244 245
    bool sync_op,  // for compatibility, no use now
    bool use_calc_stream) {
  // numel > 0 indicates the tensor need to be sliced
  const phi::DenseTensor& in_tensor_maybe_partial =
      numel > 0
          ? paddle::distributed::GetPartialTensor(in_tensor, offset, numel)
          : in_tensor;
246 247 248 249 250 251 252
  phi::distributed::CommStaticCheck::GatherLikeShape(
      *out_tensor,
      in_tensor_maybe_partial,
      /*dst_rank*/ rank_,
      /*cur_rank*/ rank_,
      size_,
      phi::AllocationType::CUSTOM);
253
  std::vector<phi::DenseTensor> in_wrapper{in_tensor_maybe_partial};
254
  std::vector<phi::DenseTensor> out_wrapper{*out_tensor};
255

256
  return Collective(
257 258
      in_wrapper,
      out_wrapper,
259 260 261 262 263 264
      [&](phi::DenseTensor& input,
          phi::DenseTensor& output,
          phi::ccl::CCLComm comm,
          const phi::stream::Stream& stream) {
        return phi::DeviceManager::CCLAllGather(
            device_type_,
265
            input.data(),
266
            output.data(),
267
            input.numel(),
268 269 270 271 272 273 274
            phi::ccl::ToCCLDataType(input.dtype()),
            comm,
            stream);
      },
      CommType::ALLGATHER);
}

275
std::shared_ptr<ProcessGroup::Task> ProcessGroupCustom::AllGather(
276 277
    phi::DenseTensor* out_tensor,
    const phi::DenseTensor& in_tensor,
278 279 280
    int64_t offset,
    int64_t numel,
    bool sync_op) {
281
  return AllGather(out_tensor, in_tensor, offset, numel, sync_op, false);
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
}

// TODO(sunyilun): methods below will be removed later
std::shared_ptr<ProcessGroup::Task> ProcessGroupCustom::AllGather(
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors) {
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCustomPlace(in_tensors, device_type_),
      true,
      platform::errors::InvalidArgument(
          "All inputs should be in CustomPlace(%s).", device_type_));
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCustomPlace(out_tensors, device_type_),
      true,
      platform::errors::InvalidArgument(
          "All outputs should be in CustomPlace(%s).", device_type_));
  return Collective(
      in_tensors,
      out_tensors,
      [&](phi::DenseTensor& input,
          phi::DenseTensor& output,
          phi::ccl::CCLComm comm,
          const phi::stream::Stream& stream) {
        return phi::DeviceManager::CCLAllGather(
            device_type_,
            input.data(),
            output.data(),
            input.numel(),
            phi::ccl::ToCCLDataType(input.dtype()),
            comm,
            stream);
      },
      CommType::ALLGATHER);
}

317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
std::shared_ptr<ProcessGroup::Task> ProcessGroupCustom::AllReduce(
    phi::DenseTensor* out_tensor,
    const phi::DenseTensor& in_tensor,
    const AllreduceOptions& opts,
    bool sync_op,  // for compatibility, no use now
    bool use_calc_stream) {
  std::vector<phi::DenseTensor> in_wrapper{in_tensor};
  std::vector<phi::DenseTensor> out_wrapper{*out_tensor};
  return AllReduce(in_wrapper, out_wrapper, opts);
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupCustom::AllReduce(
    phi::DenseTensor* out_tensor,
    const phi::DenseTensor& in_tensor,
    const AllreduceOptions& opts,
    bool sync_op  // for compatibility, no use now
) {
  std::vector<phi::DenseTensor> in_wrapper{in_tensor};
  std::vector<phi::DenseTensor> out_wrapper{*out_tensor};
  return AllReduce(in_wrapper, out_wrapper, opts);
}

339 340 341 342
std::shared_ptr<ProcessGroup::Task> ProcessGroupCustom::AllReduce(
    std::vector<phi::DenseTensor>& in_tensors,   // NOLINT
    std::vector<phi::DenseTensor>& out_tensors,  // NOLINT
    const AllreduceOptions& opts) {
343 344 345 346 347 348 349 350 351 352
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCustomPlace(in_tensors, device_type_),
      true,
      platform::errors::InvalidArgument(
          "All inputs should be in CustomPlace(%s).", device_type_));
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCustomPlace(out_tensors, device_type_),
      true,
      platform::errors::InvalidArgument(
          "All outputs should be in CustomPlace(%s).", device_type_));
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
  return Collective(
      in_tensors,
      out_tensors,
      [&](phi::DenseTensor& input,
          phi::DenseTensor& output,
          phi::ccl::CCLComm comm,
          const phi::stream::Stream& stream) {
        return phi::DeviceManager::CCLAllReduce(
            device_type_,
            input.data(),
            output.data(),
            input.numel(),
            phi::ccl::ToCCLDataType(input.dtype()),
            ToCustomCCLRedType(opts.reduce_op),
            comm,
            stream);
      },
      CommType::ALLREDUCE);
}

373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
std::shared_ptr<ProcessGroup::Task> ProcessGroupCustom::Broadcast(
    phi::DenseTensor* out_tensor,
    const phi::DenseTensor& in_tensor,
    const BroadcastOptions& opts,
    bool sync_op,  // for compatibility, no use now
    bool use_calc_stream) {
  std::vector<phi::DenseTensor> in_wrapper{in_tensor};
  std::vector<phi::DenseTensor> out_wrapper{*out_tensor};
  return Broadcast(in_wrapper, out_wrapper, opts);
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupCustom::Broadcast(
    phi::DenseTensor* out_tensor,
    const phi::DenseTensor& in_tensor,
    const BroadcastOptions& opts,
    bool sync_op) {
  std::vector<phi::DenseTensor> in_wrapper{in_tensor};
  std::vector<phi::DenseTensor> out_wrapper{*out_tensor};
  return Broadcast(in_wrapper, out_wrapper, opts);
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupCustom::Barrier(
    const BarrierOptions& opts) {
  // Only support single card single process
  PADDLE_ENFORCE_GE(opts.device_id,
                    0,
                    platform::errors::PreconditionNotMet(
                        "The barrier device id must greater or equal than 0."));
  platform::CustomPlace place(device_type_, opts.device_id);
  auto allocator = std::unique_ptr<phi::Allocator>(
      new paddle::experimental::DefaultAllocator(place));
  phi::DenseTensorMeta meta(phi::DataType::FLOAT32, phi::DDim{1});
  phi::DenseTensor barrier_tensor{allocator.get(), meta};

  auto task = ProcessGroupCustom::AllReduce(&barrier_tensor,
                                            barrier_tensor,
                                            {},
                                            /*sync_op*/ true,
                                            false);
  auto xccl_task = dynamic_cast<ProcessGroupCustom::CustomTask*>(task.get());
  xccl_task->barrierTensors_ = {barrier_tensor};
  return task;
}

phi::DeviceContext* ProcessGroupCustom::GetDeviceContext(
    const Place& place) const {
  const std::string key = GetKeyFromPlace(place);
  const auto& iter = places_to_ctx_.find(key);
  PADDLE_ENFORCE_NE(
      iter,
      places_to_ctx_.end(),
      platform::errors::NotFound(
          "Cannot find the device context in this process group."));
  return iter->second[0].get();
}

phi::ccl::CCLComm ProcessGroupCustom::CustomCCLComm(const Place& place) const {
  std::vector<Place> places = {place};
  const auto& iter = places_to_customcomm_.find(GetKeyFromPlaces(places));
  PADDLE_ENFORCE_NE(iter,
                    places_to_customcomm_.end(),
                    platform::errors::InvalidArgument(
                        "Cannot find nccl comm in process group."));
  return iter->second[0]->GetCustomCCLComm();
}

439 440 441 442
std::shared_ptr<ProcessGroup::Task> ProcessGroupCustom::Broadcast(
    std::vector<phi::DenseTensor>& in_tensors,   // NOLINT
    std::vector<phi::DenseTensor>& out_tensors,  // NOLINT
    const BroadcastOptions& opts) {
443 444 445 446 447 448 449 450 451 452
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCustomPlace(in_tensors, device_type_),
      true,
      platform::errors::InvalidArgument(
          "All inputs should be in CustomPlace(%s).", device_type_));
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCustomPlace(out_tensors, device_type_),
      true,
      platform::errors::InvalidArgument(
          "All outputs should be in CustomPlace(%s).", device_type_));
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
  return Collective(
      in_tensors,
      out_tensors,
      [&](phi::DenseTensor& input,
          phi::DenseTensor& output,
          phi::ccl::CCLComm comm,
          const phi::stream::Stream& stream) {
        int root = opts.source_rank * in_tensors.size() + opts.source_root;
        if (rank_ == root) {
          return phi::DeviceManager::CCLBroadcast(
              device_type_,
              input.data(),
              input.numel(),
              phi::ccl::ToCCLDataType(input.dtype()),
              root,
              comm,
              stream);
        } else {
          return phi::DeviceManager::CCLBroadcast(
              device_type_,
              output.data(),
              output.numel(),
              phi::ccl::ToCCLDataType(output.dtype()),
              root,
              comm,
              stream);
        }
      },
      CommType::BROADCAST);
}

L
LiYuRio 已提交
484 485
std::shared_ptr<ProcessGroupCustom>
ProcessGroupCustom::CreateProcessGroupCustom(
486
    const std::shared_ptr<phi::distributed::Store>& store,
L
LiYuRio 已提交
487 488 489 490 491 492 493 494 495 496
    const std::string& device_type,
    int rank,
    int size,
    int gid) {
  auto process_group =
      std::make_shared<ProcessGroupCustom>(store, device_type, rank, size, gid);
  ProcessGroupIdMap::GetInstance().emplace(gid, process_group);
  return process_group;
}

497 498
}  //  namespace distributed
}  //  namespace paddle