elementwise_pow_op_npu.cc 8.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <memory>
#include <string>

18
#include "paddle/fluid/operators/elementwise/elementwise_npu.h"
19 20 21 22 23 24 25 26 27 28 29 30
#include "paddle/fluid/operators/elementwise/elementwise_pow_op.h"
#include "paddle/fluid/operators/npu_op_runner.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

template <typename DeviceContext, typename T>
class ElementwisePowNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
31 32 33
    auto& dev_ctx =
        ctx.template device_context<paddle::platform::NPUDeviceContext>();

34 35 36 37 38
    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
    auto* out = ctx.Output<Tensor>("Out");

    auto place = ctx.GetPlace();
39
    int axis = ctx.Attr<int>("axis");
40 41 42

    out->mutable_data<T>(place);

43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
    bool direct_compute = false;
    auto x_dims = x->dims();
    auto y_dims = y->dims();
    axis =
        (axis < 0 ? std::abs(x_dims.size() - y_dims.size()) + axis + 1 : axis);
    if (x_dims.size() >= y_dims.size()) {
      direct_compute =
          y_dims == framework::slice_ddim(x_dims, axis, x_dims.size());
    } else {
      direct_compute =
          x_dims == framework::slice_ddim(y_dims, axis, y_dims.size());
    }

    auto stream = dev_ctx.stream();

    if (direct_compute) {
      const auto& runner = NpuOpRunner("Pow", {*x, *y}, {*out}, {});
      runner.Run(stream);
    } else {
      Tensor transformed_x, transformed_y;
      NpuElementWiseOpBroadcast<T>(dev_ctx, x, y, axis, &transformed_x,
                                   &transformed_y);
      const auto& runner =
          NpuOpRunner("Pow", {transformed_x, transformed_y}, {*out}, {});
      runner.Run(stream);
    }
  }
};
71

72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
template <typename DeviceContext, typename T>
class ElementwisePowGradNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto& dev_ctx =
        ctx.template device_context<paddle::platform::NPUDeviceContext>();
    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
    int axis = ctx.Attr<int>("axis");
    auto place = ctx.GetPlace();

    auto x_dims = x->dims();
    auto y_dims = y->dims();
    axis =
        (axis < 0 ? std::abs(x_dims.size() - y_dims.size()) + axis + 1 : axis);
    Tensor transformed_x, transformed_y;
    NpuElementWiseOpBroadcast<T>(dev_ctx, x, y, axis, &transformed_x,
                                 &transformed_y);

    auto dout_dims = dout->dims();
    auto stream = dev_ctx.stream();
    // Reshape info vector.
    std::vector<int> reduce_axes;
    if (dx) {
      Tensor zero_tensor(dout->type());
      zero_tensor.mutable_data<T>(dout_dims, place);
      FillNpuTensorWithConstant<T>(&zero_tensor, static_cast<T>(0));

      dx->mutable_data<T>(place);
      Tensor tmp_dx;
      tmp_dx.mutable_data<T>(dout_dims, place);

      // dx = dout * y * pow(x, y - 1);
      Tensor PowGrad_dx_temp1(dout->type());
      PowGrad_dx_temp1.mutable_data<T>(dout->dims(), place);
      const auto& runner_PowGrad_dx_temp1 =
          NpuOpRunner("Mul", {*dout, transformed_y}, {PowGrad_dx_temp1}, {});
      runner_PowGrad_dx_temp1.Run(stream);

      Tensor one_dx(transformed_y.type());
      one_dx.mutable_data<T>(transformed_y.dims(), place);
      const auto& runner_one_dx =
          NpuOpRunner("OnesLike", {transformed_y}, {one_dx}, {});
      runner_one_dx.Run(stream);

      Tensor sub_dx(transformed_y.type());
      sub_dx.mutable_data<T>(transformed_y.dims(), place);
      const auto& runner_sub_dx =
          NpuOpRunner("Sub", {transformed_y, one_dx}, {sub_dx}, {});
      runner_sub_dx.Run(stream);

      Tensor PowGrad_dx_temp2(transformed_x.type());
      PowGrad_dx_temp2.mutable_data<T>(transformed_x.dims(), place);
      const auto& runner_PowGrad_dx_temp2 =
          NpuOpRunner("Pow", {transformed_x, sub_dx}, {PowGrad_dx_temp2}, {});
      runner_PowGrad_dx_temp2.Run(stream);

      const auto& runner_dx = NpuOpRunner(
          "Mul", {PowGrad_dx_temp1, PowGrad_dx_temp2}, {tmp_dx}, {});
      runner_dx.Run(stream);

      if (x_dims != dout_dims) {
        reduce_axes.clear();

        int src_axis = (x_dims.size() < dout_dims.size() ? axis : 0);
        for (int ax = 0; ax < dout_dims.size(); ++ax) {
          if ((ax < src_axis || ax >= src_axis + x_dims.size()) ||
              (dout_dims[ax] > 1 && x_dims[ax - src_axis] == 1)) {
            reduce_axes.push_back(ax);
          }
        }
        if (!reduce_axes.empty()) {
          const auto& runner =
              NpuOpRunner("ReduceSumD", {tmp_dx}, {*dx},
                          {{"axes", reduce_axes}, {"keep_dims", false}});
          runner.Run(stream);
        }
      } else {
        framework::TensorCopy(tmp_dx, place, dev_ctx, dx);
      }
    }
    if (dy) {
      Tensor zero_tensor(dout->type());
      zero_tensor.mutable_data<T>(dout_dims, place);
      FillNpuTensorWithConstant<T>(&zero_tensor, static_cast<T>(0));

      dy->mutable_data<T>(place);
      Tensor tmp_dy;
      tmp_dy.mutable_data<T>(dout_dims, place);

      // dy = dout * log(x) * pow(x, y)
      Tensor PowGrad_dy_temp1(transformed_x.type());
      PowGrad_dy_temp1.mutable_data<T>(transformed_x.dims(), place);
      const auto& runner_PowGrad_dy_temp1 = NpuOpRunner(
          "Pow", {transformed_x, transformed_y}, {PowGrad_dy_temp1}, {});
      runner_PowGrad_dy_temp1.Run(stream);

      Tensor one_dy(transformed_x.type());
      one_dy.mutable_data<T>(transformed_x.dims(), place);
      const auto& runner_one_dy =
          NpuOpRunner("OnesLike", {transformed_x}, {one_dy}, {});
      runner_one_dy.Run(stream);

      Tensor sub_dy(transformed_x.type());
      sub_dy.mutable_data<T>(transformed_x.dims(), place);
      const auto& runner_sub_dy =
          NpuOpRunner("Sub", {transformed_x, one_dy}, {sub_dy}, {});
      runner_sub_dy.Run(stream);

      Tensor log_dy(transformed_x.type());
      log_dy.mutable_data<T>(transformed_x.dims(), place);
      const auto& runner_log_dy = NpuOpRunner("Log1p", {sub_dy}, {log_dy}, {});
      runner_log_dy.Run(stream);

      Tensor PowGrad_dy_temp2(transformed_x.type());
      PowGrad_dy_temp2.mutable_data<T>(transformed_x.dims(), place);
      const auto& runner_PowGrad_dy_temp2 = NpuOpRunner(
          "Mul", {log_dy, PowGrad_dy_temp1}, {PowGrad_dy_temp2}, {});
      runner_PowGrad_dy_temp2.Run(stream);

      const auto& runner_dy =
          NpuOpRunner("Mul", {*dout, PowGrad_dy_temp2}, {tmp_dy}, {});
      runner_dy.Run(stream);

      if (y_dims != dout_dims) {
        reduce_axes.clear();

        int src_axis = (y_dims.size() < dout_dims.size() ? axis : 0);
        for (int ax = 0; ax < dout_dims.size(); ++ax) {
          if ((ax < src_axis || ax >= src_axis + y_dims.size()) ||
              (dout_dims[ax] > 1 && y_dims[ax - src_axis] == 1)) {
            reduce_axes.push_back(ax);
          }
        }
        if (!reduce_axes.empty()) {
          const auto& runner =
              NpuOpRunner("ReduceSumD", {tmp_dy}, {*dy},
                          {{"axes", reduce_axes}, {"keep_dims", false}});
          runner.Run(stream);
        }
      } else {
        framework::TensorCopy(tmp_dy, place, dev_ctx, dy);
      }
    }
    if (!dx && !dy) {
      PADDLE_THROW(platform::errors::Unavailable(
          "Not support all outputs to be empty."));
    }
223 224 225 226 227 228 229
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
230
namespace plat = paddle::platform;
231 232 233

REGISTER_OP_NPU_KERNEL(
    elementwise_pow,
234 235 236 237 238 239 240 241 242 243 244
    ops::ElementwisePowNPUKernel<plat::NPUDeviceContext, plat::float16>,
    ops::ElementwisePowNPUKernel<plat::NPUDeviceContext, float>,
    ops::ElementwisePowNPUKernel<plat::NPUDeviceContext, double>,
    ops::ElementwisePowNPUKernel<plat::NPUDeviceContext, int>);

REGISTER_OP_NPU_KERNEL(
    elementwise_pow_grad,
    ops::ElementwisePowGradNPUKernel<plat::NPUDeviceContext, plat::float16>,
    ops::ElementwisePowGradNPUKernel<plat::NPUDeviceContext, float>,
    ops::ElementwisePowGradNPUKernel<plat::NPUDeviceContext, double>,
    ops::ElementwisePowGradNPUKernel<plat::NPUDeviceContext, int>);