new_op_cn.html 52.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194


<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
  <meta charset="utf-8">
  
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  
  <title>如何写新的Operator &mdash; PaddlePaddle  文档</title>
  

  
  

  

  
  
    

  

  
  
    <link rel="stylesheet" href="../../_static/css/theme.css" type="text/css" />
  

  
  
        <link rel="index" title="索引"
              href="../../genindex.html"/>
        <link rel="search" title="搜索" href="../../search.html"/>
    <link rel="top" title="PaddlePaddle  文档" href="../../index.html"/> 

  <link rel="stylesheet" href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" type="text/css" />
  <link rel="stylesheet" href="../../_static/css/override.css" type="text/css" />
  <script>
  var _hmt = _hmt || [];
  (function() {
    var hm = document.createElement("script");
    hm.src = "//hm.baidu.com/hm.js?b9a314ab40d04d805655aab1deee08ba";
    var s = document.getElementsByTagName("script")[0]; 
    s.parentNode.insertBefore(hm, s);
  })();
  </script>

  

  
  <script src="../../_static/js/modernizr.min.js"></script>

</head>

<body class="wy-body-for-nav" role="document">

  
  <header class="site-header">
    <div class="site-logo">
      <a href="/"><img src="../../_static/images/PP_w.png"></a>
    </div>
    <div class="site-nav-links">
      <div class="site-menu">
        <a class="fork-on-github" href="https://github.com/PaddlePaddle/Paddle" target="_blank"><i class="fa fa-github"></i>Fork me on Github</a>
        <div class="language-switcher dropdown">
          <a type="button" data-toggle="dropdown">
            <span>English</span>
            <i class="fa fa-angle-up"></i>
            <i class="fa fa-angle-down"></i>
          </a>
          <ul class="dropdown-menu">
            <li><a href="/doc_cn">中文</a></li>
            <li><a href="/doc">English</a></li>
          </ul>
        </div>
        <ul class="site-page-links">
          <li><a href="/">Home</a></li>
        </ul>
      </div>
      <div class="doc-module">
        
        <ul>
<li class="toctree-l1"><a class="reference internal" href="../../getstarted/index_cn.html">新手入门</a></li>
<li class="toctree-l1"><a class="reference internal" href="../index_cn.html">进阶指南</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../api/index_cn.html">API</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../faq/index_cn.html">FAQ</a></li>
</ul>

        
<div role="search">
  <form id="rtd-search-form" class="wy-form" action="../../search.html" method="get">
    <input type="text" name="q" placeholder="Search docs" />
    <input type="hidden" name="check_keywords" value="yes" />
    <input type="hidden" name="area" value="default" />
  </form>
</div>        
      </div>
    </div>
  </header>
  
  <div class="main-content-wrap">

    
    <nav class="doc-menu-vertical" role="navigation">
        
          
          <ul>
<li class="toctree-l1"><a class="reference internal" href="../../getstarted/index_cn.html">新手入门</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../getstarted/build_and_install/index_cn.html">安装与编译</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../getstarted/build_and_install/docker_install_cn.html">PaddlePaddle的Docker容器使用方式</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../getstarted/build_and_install/cmake/build_from_source_cn.html">PaddlePaddle的编译选项</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../getstarted/concepts/use_concepts_cn.html">基本使用概念</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../index_cn.html">进阶指南</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../usage/cmd_parameter/index_cn.html">设置命令行参数</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../usage/cmd_parameter/use_case_cn.html">使用案例</a></li>
<li class="toctree-l3"><a class="reference internal" href="../usage/cmd_parameter/arguments_cn.html">参数概述</a></li>
<li class="toctree-l3"><a class="reference internal" href="../usage/cmd_parameter/detail_introduction_cn.html">细节描述</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../usage/cluster/cluster_train_cn.html">运行分布式训练</a></li>
<li class="toctree-l2"><a class="reference internal" href="../usage/k8s/k8s_basis_cn.html">Kubernetes 简介</a></li>
<li class="toctree-l2"><a class="reference internal" href="../usage/k8s/k8s_cn.html">Kubernetes单机训练</a></li>
<li class="toctree-l2"><a class="reference internal" href="../usage/k8s/k8s_distributed_cn.html">Kubernetes分布式训练</a></li>
<li class="toctree-l2"><a class="reference internal" href="build_cn.html">编译PaddlePaddle和运行单元测试</a></li>
<li class="toctree-l2"><a class="reference internal" href="write_docs_cn.html">如何贡献/修改文档</a></li>
<li class="toctree-l2"><a class="reference internal" href="contribute_to_paddle_cn.html">如何贡献代码</a></li>
<li class="toctree-l2"><a class="reference internal" href="../deep_model/rnn/index_cn.html">RNN相关模型</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../deep_model/rnn/rnn_config_cn.html">RNN配置</a></li>
<li class="toctree-l3"><a class="reference internal" href="../deep_model/rnn/recurrent_group_cn.html">Recurrent Group教程</a></li>
<li class="toctree-l3"><a class="reference internal" href="../deep_model/rnn/hierarchical_layer_cn.html">支持双层序列作为输入的Layer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../deep_model/rnn/hrnn_rnn_api_compare_cn.html">单双层RNN API对比介绍</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../optimization/gpu_profiling_cn.html">GPU性能分析与调优</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../api/index_cn.html">API</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/model_configs.html">模型配置</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/activation.html">Activation</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/layer.html">Layers</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/evaluators.html">Evaluators</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/optimizer.html">Optimizer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/pooling.html">Pooling</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/networks.html">Networks</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/data.html">数据访问</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/run_logic.html">训练与应用</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../faq/index_cn.html">FAQ</a></li>
</ul>

        
    </nav>
    
    <section class="doc-content-wrap">

      

 







<div role="navigation" aria-label="breadcrumbs navigation">
  <ul class="wy-breadcrumbs">
      
    <li>如何写新的Operator</li>
  </ul>
</div>
      
      <div class="wy-nav-content" id="doc-content">
        <div class="rst-content">
          <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
           <div itemprop="articleBody">
            
  <div class="section" id="operator">
<span id="operator"></span><h1>如何写新的Operator<a class="headerlink" href="#operator" title="永久链接至标题"></a></h1>
<ul class="simple">
<li><a class="reference external" href="#概念简介">概念简介</a></li>
<li><a class="reference external" href="#实现C++类">实现C++类</a><ul>
<li><a class="reference external" href="#定义ProtoMaker类">定义ProtoMaker类</a></li>
<li><a class="reference external" href="#定义Operator类">定义Operator类</a></li>
<li><a class="reference external" href="#定义OpKernel类">定义OpKernel类</a></li>
195
<li><a class="reference external" href="#注册Operator">注册Operator</a></li>
196 197 198 199 200 201 202
<li><a class="reference external" href="#编译">编译</a></li>
</ul>
</li>
<li><a class="reference external" href="#绑定Python">绑定Python</a></li>
<li><a class="reference external" href="#实现单元测试">实现单元测试</a><ul>
<li><a class="reference external" href="#前向Operator单测">前向Operator单测</a></li>
<li><a class="reference external" href="#反向Operator单测">反向Operator单测</a></li>
203
<li><a class="reference external" href="#编译和执行">编译和执行</a></li>
204 205 206 207 208 209 210 211 212 213 214 215
</ul>
</li>
</ul>
<div class="section" id="">
<span id="id1"></span><h2>概念简介<a class="headerlink" href="#" title="永久链接至标题"></a></h2>
<p>简单介绍需要用到基类,详细介绍请参考设计文档。</p>
<ul class="simple">
<li><code class="docutils literal"><span class="pre">framework::OperatorBase</span></code>: Operator(简写,Op)基类。</li>
<li><code class="docutils literal"><span class="pre">framework::OpKernel</span></code>: Op计算函数的基类,称作Kernel。</li>
<li><code class="docutils literal"><span class="pre">framework::OperatorWithKernel</span></code>:继承自OperatorBase,Op有计算函数,称作有Kernel。</li>
<li><code class="docutils literal"><span class="pre">class</span> <span class="pre">OpProtoAndCheckerMaker</span></code>:描述该Op的输入、输出、属性、注释,主要用于Python API接口生成</li>
</ul>
216 217 218 219 220
<p>依据是否包含kernel,将Op分为两种:包含Kernel的Op和不包含kernel的Op,前者Op的定义继承自<code class="docutils literal"><span class="pre">OperatorBase</span></code>,后者继承自<code class="docutils literal"><span class="pre">OperatorWithKernel</span></code>。本教程主要介绍带Kernel的Op如何写,简单总结Op需要包含的内容如下:</p>
<p>内容            | 定义位置&#8212;&#8212;&#8212;&#8212;&#8211;  | :&#8212;&#8212;&#8212;&#8212;&#8212;&#8212;&#8212;-OpProtoMake定义  | <code class="docutils literal"><span class="pre">.cc</span></code>文件,Backward Op不需要定义OpProtoMake
Op定义           | <code class="docutils literal"><span class="pre">.cc</span></code>文件
Kernel实现       | CPU、GPU共享Kernel在<code class="docutils literal"><span class="pre">.h</span></code>文件,否则,CPU可以在<code class="docutils literal"><span class="pre">.cc</span></code>文件,GPU可在<code class="docutils literal"><span class="pre">.cu</span></code>文件。
注册Op           | Op注册在<code class="docutils literal"><span class="pre">.cc</span></code>文件;Kernel注册CPU在<code class="docutils literal"><span class="pre">.cc</span></code>文件,GPU在<code class="docutils literal"><span class="pre">.cu</span></code>文件</p>
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
<p>下面以矩阵乘操作,即<a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/mul_op.cc">MulOp</a>为例来介绍如何写带Kernel的Operator。</p>
</div>
<div class="section" id="c">
<span id="c"></span><h2>实现C++类<a class="headerlink" href="#c" title="永久链接至标题"></a></h2>
<div class="section" id="protomaker">
<span id="protomaker"></span><h3>1. 定义ProtoMaker类<a class="headerlink" href="#protomaker" title="永久链接至标题"></a></h3>
<p>矩阵乘的公式:$Out = X * Y$, 可见该计算由两个输入,一个输出组成。首先定义<code class="docutils literal"><span class="pre">ProtoMaker</span></code>来描述该Op的输入、输出及注释:</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="k">class</span> <span class="nc">MulOpMaker</span> <span class="p">:</span> <span class="n">public</span> <span class="n">framework</span><span class="p">::</span><span class="n">OpProtoAndCheckerMaker</span> <span class="p">{</span>
 <span class="n">public</span><span class="p">:</span>
  <span class="n">MulOpMaker</span><span class="p">(</span><span class="n">framework</span><span class="p">::</span><span class="n">OpProto</span> <span class="o">*</span><span class="n">proto</span><span class="p">,</span> <span class="n">framework</span><span class="p">::</span><span class="n">OpAttrChecker</span> <span class="o">*</span><span class="n">op_checker</span><span class="p">)</span>
      <span class="p">:</span> <span class="n">OpProtoAndCheckerMaker</span><span class="p">(</span><span class="n">proto</span><span class="p">,</span> <span class="n">op_checker</span><span class="p">)</span> <span class="p">{</span>
    <span class="n">AddInput</span><span class="p">(</span><span class="s2">&quot;X&quot;</span><span class="p">,</span> <span class="s2">&quot;The first input of mul op&quot;</span><span class="p">);</span>
    <span class="n">AddInput</span><span class="p">(</span><span class="s2">&quot;Y&quot;</span><span class="p">,</span> <span class="s2">&quot;The second input of mul op&quot;</span><span class="p">);</span>
    <span class="n">AddOutput</span><span class="p">(</span><span class="s2">&quot;Out&quot;</span><span class="p">,</span> <span class="s2">&quot;The output of mul op&quot;</span><span class="p">);</span>
    <span class="n">AddComment</span><span class="p">(</span><span class="sa">R</span><span class="s2">&quot;DOC(</span>
<span class="n">Two</span> <span class="n">Element</span> <span class="n">Mul</span> <span class="n">Operator</span><span class="o">.</span>
<span class="n">The</span> <span class="n">equation</span> <span class="ow">is</span><span class="p">:</span> <span class="n">Out</span> <span class="o">=</span> <span class="n">X</span> <span class="o">*</span> <span class="n">Y</span>
<span class="p">)</span><span class="n">DOC</span><span class="s2">&quot;);</span>
  <span class="p">}</span>
<span class="p">};</span>
</pre></div>
</div>
<p><a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/mul_op.cc#L43"><code class="docutils literal"><span class="pre">MulOpMaker</span></code></a>继承自<code class="docutils literal"><span class="pre">framework::OpProtoAndCheckerMaker</span></code>,构造函数包括2个:</p>
<ul class="simple">
<li><code class="docutils literal"><span class="pre">framework::OpProto</span></code> : 前者存储Op的输入输出和参数属性,将用于Python API接口的生成。</li>
<li><code class="docutils literal"><span class="pre">framework::OpAttrChecker</span></code> :后者用于检查参数属性的合法性。</li>
</ul>
<p>构造函数里通过<code class="docutils literal"><span class="pre">AddInput</span></code>添加输入参数,通过<code class="docutils literal"><span class="pre">AddOutput</span></code>添加输出参数,通过<code class="docutils literal"><span class="pre">AddComment</span></code>添加该Op的注释,这些函数会将对应内容添加到<code class="docutils literal"><span class="pre">OpProto</span></code>中。</p>
<p><code class="docutils literal"><span class="pre">MulOp</span></code>中添加两个输入<code class="docutils literal"><span class="pre">X</span></code><code class="docutils literal"><span class="pre">Y</span></code>,添加了一个输出<code class="docutils literal"><span class="pre">Out</span></code>,并解释了各自含义,该命名尽可能的规范。</p>
<p>再举个<a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/scale_op.cc#L37"><code class="docutils literal"><span class="pre">ScaleOp</span></code></a>的例子:</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="n">template</span> <span class="o">&lt;</span><span class="n">typename</span> <span class="n">AttrType</span><span class="o">&gt;</span>
<span class="k">class</span> <span class="nc">ScaleOpMaker</span> <span class="p">:</span> <span class="n">public</span> <span class="n">framework</span><span class="p">::</span><span class="n">OpProtoAndCheckerMaker</span> <span class="p">{</span>
 <span class="n">public</span><span class="p">:</span>
  <span class="n">ScaleOpMaker</span><span class="p">(</span><span class="n">framework</span><span class="p">::</span><span class="n">OpProto</span> <span class="o">*</span><span class="n">proto</span><span class="p">,</span> <span class="n">framework</span><span class="p">::</span><span class="n">OpAttrChecker</span> <span class="o">*</span><span class="n">op_checker</span><span class="p">)</span>
      <span class="p">:</span> <span class="n">OpProtoAndCheckerMaker</span><span class="p">(</span><span class="n">proto</span><span class="p">,</span> <span class="n">op_checker</span><span class="p">)</span> <span class="p">{</span>
    <span class="n">AddInput</span><span class="p">(</span><span class="s2">&quot;X&quot;</span><span class="p">,</span> <span class="s2">&quot;The input tensor of scale operator.&quot;</span><span class="p">)</span><span class="o">.</span><span class="n">NotInGradient</span><span class="p">();</span>
    <span class="n">AddOutput</span><span class="p">(</span><span class="s2">&quot;Out&quot;</span><span class="p">,</span> <span class="s2">&quot;The output tensor of scale operator.&quot;</span><span class="p">)</span><span class="o">.</span><span class="n">NotInGradient</span><span class="p">();</span>
    <span class="n">AddComment</span><span class="p">(</span><span class="sa">R</span><span class="s2">&quot;DOC(Scale operator</span>
<span class="n">The</span> <span class="n">equation</span> <span class="ow">is</span><span class="p">:</span> <span class="n">Out</span> <span class="o">=</span> <span class="n">scale</span><span class="o">*</span><span class="n">X</span>
<span class="p">)</span><span class="n">DOC</span><span class="s2">&quot;);</span>
    <span class="n">AddAttr</span><span class="o">&lt;</span><span class="n">AttrType</span><span class="o">&gt;</span><span class="p">(</span><span class="s2">&quot;scale&quot;</span><span class="p">,</span> <span class="s2">&quot;scale of scale operator.&quot;</span><span class="p">)</span><span class="o">.</span><span class="n">SetDefault</span><span class="p">(</span><span class="mf">1.0</span><span class="p">);</span>
  <span class="p">}</span>
<span class="p">};</span>
</pre></div>
</div>
<p>在这个例子里,两处不同:</p>
<ul class="simple">
<li><code class="docutils literal"><span class="pre">AddInput(&quot;X&quot;,&quot;...&quot;).NotInGradient()</span></code> : 表示<code class="docutils literal"><span class="pre">X</span></code>这个输入不参与<code class="docutils literal"><span class="pre">ScaleOp</span></code>对应的梯度Op计算之中。</li>
<li><code class="docutils literal"><span class="pre">AddAttr&lt;AttrType&gt;(&quot;scale&quot;,</span> <span class="pre">&quot;...&quot;).SetDefault(1.0);</span></code> : 增加<code class="docutils literal"><span class="pre">scale</span></code>系数,作为参数属性,并且设置默认值为1.0。</li>
</ul>
</div>
<div class="section" id="operator">
<span id="id2"></span><h3>2. 定义Operator类<a class="headerlink" href="#operator" title="永久链接至标题"></a></h3>
<div class="highlight-c++"><div class="highlight"><pre><span></span><span class="k">class</span> <span class="nc">MulOp</span> <span class="o">:</span> <span class="k">public</span> <span class="n">framework</span><span class="o">::</span><span class="n">OperatorWithKernel</span> <span class="p">{</span>
 <span class="k">public</span><span class="o">:</span>
  <span class="k">using</span> <span class="n">framework</span><span class="o">::</span><span class="n">OperatorWithKernel</span><span class="o">::</span><span class="n">OperatorWithKernel</span><span class="p">;</span>

 <span class="k">protected</span><span class="o">:</span>
  <span class="kt">void</span> <span class="n">InferShape</span><span class="p">(</span><span class="k">const</span> <span class="n">framework</span><span class="o">::</span><span class="n">InferShapeContext</span> <span class="o">&amp;</span><span class="n">ctx</span><span class="p">)</span> <span class="k">const</span> <span class="k">override</span> <span class="p">{</span>
    <span class="k">auto</span> <span class="n">dim0</span> <span class="o">=</span> <span class="n">ctx</span><span class="p">.</span><span class="n">Input</span><span class="o">&lt;</span><span class="n">Tensor</span><span class="o">&gt;</span><span class="p">(</span><span class="s">&quot;X&quot;</span><span class="p">)</span><span class="o">-&gt;</span><span class="n">dims</span><span class="p">();</span>
    <span class="k">auto</span> <span class="n">dim1</span> <span class="o">=</span> <span class="n">ctx</span><span class="p">.</span><span class="n">Input</span><span class="o">&lt;</span><span class="n">Tensor</span><span class="o">&gt;</span><span class="p">(</span><span class="s">&quot;Y&quot;</span><span class="p">)</span><span class="o">-&gt;</span><span class="n">dims</span><span class="p">();</span>
    <span class="n">PADDLE_ENFORCE_EQ</span><span class="p">(</span><span class="n">dim0</span><span class="p">.</span><span class="n">size</span><span class="p">(),</span> <span class="mi">2</span><span class="p">,</span>
                      <span class="s">&quot;input X(%s) should be a tensor with 2 dims, a matrix&quot;</span><span class="p">,</span>
                      <span class="n">ctx</span><span class="p">.</span><span class="n">op_</span><span class="p">.</span><span class="n">Input</span><span class="p">(</span><span class="s">&quot;X&quot;</span><span class="p">));</span>
    <span class="n">PADDLE_ENFORCE_EQ</span><span class="p">(</span><span class="n">dim1</span><span class="p">.</span><span class="n">size</span><span class="p">(),</span> <span class="mi">2</span><span class="p">,</span>
                      <span class="s">&quot;input Y(%s) should be a tensor with 2 dims, a matrix&quot;</span><span class="p">,</span>
                      <span class="n">ctx</span><span class="p">.</span><span class="n">op_</span><span class="p">.</span><span class="n">Input</span><span class="p">(</span><span class="s">&quot;Y&quot;</span><span class="p">));</span>
    <span class="n">PADDLE_ENFORCE_EQ</span><span class="p">(</span>
        <span class="n">dim0</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span> <span class="n">dim1</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span>
        <span class="s">&quot;First matrix&#39;s width must be equal with second matrix&#39;s height.&quot;</span><span class="p">);</span>
    <span class="n">ctx</span><span class="p">.</span><span class="n">Output</span><span class="o">&lt;</span><span class="n">Tensor</span><span class="o">&gt;</span><span class="p">(</span><span class="s">&quot;Out&quot;</span><span class="p">)</span><span class="o">-&gt;</span><span class="n">Resize</span><span class="p">({</span><span class="n">dim0</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">dim1</span><span class="p">[</span><span class="mi">1</span><span class="p">]});</span>
  <span class="p">}</span>
<span class="p">};</span>
</pre></div>
</div>
<p><a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/mul_op.cc#L22"><code class="docutils literal"><span class="pre">MulOp</span></code></a>继承自<code class="docutils literal"><span class="pre">OperatorWithKernel</span></code><code class="docutils literal"><span class="pre">public</span></code>成员:</p>
<div class="highlight-c++"><div class="highlight"><pre><span></span><span class="k">using</span> <span class="n">framework</span><span class="o">::</span><span class="n">OperatorWithKernel</span><span class="o">::</span><span class="n">OperatorWithKernel</span><span class="p">;</span>
</pre></div>
</div>
<p>这句表示使用基类<code class="docutils literal"><span class="pre">OperatorWithKernel</span></code>的构造函数,也可写成:</p>
<div class="highlight-c++"><div class="highlight"><pre><span></span><span class="n">MulOp</span><span class="p">(</span><span class="k">const</span> <span class="n">std</span><span class="o">::</span><span class="n">string</span> <span class="o">&amp;</span><span class="n">type</span><span class="p">,</span> <span class="k">const</span> <span class="n">framework</span><span class="o">::</span><span class="n">VariableNameMap</span> <span class="o">&amp;</span><span class="n">inputs</span><span class="p">,</span>
      <span class="k">const</span> <span class="n">framework</span><span class="o">::</span><span class="n">VariableNameMap</span> <span class="o">&amp;</span><span class="n">outputs</span><span class="p">,</span>
      <span class="k">const</span> <span class="n">framework</span><span class="o">::</span><span class="n">AttributeMap</span> <span class="o">&amp;</span><span class="n">attrs</span><span class="p">)</span>
  <span class="o">:</span> <span class="n">OperatorWithKernel</span><span class="p">(</span><span class="n">type</span><span class="p">,</span> <span class="n">inputs</span><span class="p">,</span> <span class="n">outputs</span><span class="p">,</span> <span class="n">attrs</span><span class="p">)</span> <span class="p">{}</span>
</pre></div>
</div>
307 308 309 310 311
<p>还需要重写<code class="docutils literal"><span class="pre">InferShape</span></code>接口。<code class="docutils literal"><span class="pre">InferShape</span></code>为const函数,不能修改Op的成员变量,参数为<code class="docutils literal"><span class="pre">const</span> <span class="pre">framework::InferShapeContext</span> <span class="pre">&amp;ctx</span></code>,通过该参数可获取到输入输出以及属性。它的功能是:</p>
<ul class="simple">
<li>1). 做检查, 尽早报错:检查输入数据维度、类型等是否合法。</li>
<li>2). 设置输出Tensor的形状。</li>
</ul>
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
<p>通常<code class="docutils literal"><span class="pre">OpProtoMaker</span></code><code class="docutils literal"><span class="pre">Op</span></code>类的定义写在<code class="docutils literal"><span class="pre">.cc</span></code>文件中,和要讲到的注册函数一起放在<code class="docutils literal"><span class="pre">.cc</span></code></p>
</div>
<div class="section" id="opkernel">
<span id="opkernel"></span><h3>3. 定义OpKernel类<a class="headerlink" href="#opkernel" title="永久链接至标题"></a></h3>
<div class="highlight-C++"><div class="highlight"><pre><span></span><span class="k">template</span> <span class="o">&lt;</span><span class="k">typename</span> <span class="n">Place</span><span class="p">,</span> <span class="k">typename</span> <span class="n">T</span><span class="o">&gt;</span>
<span class="k">class</span> <span class="nc">MulKernel</span> <span class="o">:</span> <span class="k">public</span> <span class="n">framework</span><span class="o">::</span><span class="n">OpKernel</span> <span class="p">{</span>
 <span class="k">public</span><span class="o">:</span>
  <span class="kt">void</span> <span class="n">Compute</span><span class="p">(</span><span class="k">const</span> <span class="n">framework</span><span class="o">::</span><span class="n">ExecutionContext</span><span class="o">&amp;</span> <span class="n">context</span><span class="p">)</span> <span class="k">const</span> <span class="k">override</span> <span class="p">{</span>
    <span class="k">auto</span><span class="o">*</span> <span class="n">X</span> <span class="o">=</span> <span class="n">context</span><span class="p">.</span><span class="n">Input</span><span class="o">&lt;</span><span class="n">Tensor</span><span class="o">&gt;</span><span class="p">(</span><span class="s">&quot;X&quot;</span><span class="p">);</span>
    <span class="k">auto</span><span class="o">*</span> <span class="n">Y</span> <span class="o">=</span> <span class="n">context</span><span class="p">.</span><span class="n">Input</span><span class="o">&lt;</span><span class="n">Tensor</span><span class="o">&gt;</span><span class="p">(</span><span class="s">&quot;Y&quot;</span><span class="p">);</span>
    <span class="k">auto</span><span class="o">*</span> <span class="n">Z</span> <span class="o">=</span> <span class="n">context</span><span class="p">.</span><span class="n">Output</span><span class="o">&lt;</span><span class="n">Tensor</span><span class="o">&gt;</span><span class="p">(</span><span class="s">&quot;Out&quot;</span><span class="p">);</span>
    <span class="n">Z</span><span class="o">-&gt;</span><span class="n">mutable_data</span><span class="o">&lt;</span><span class="n">T</span><span class="o">&gt;</span><span class="p">(</span><span class="n">context</span><span class="p">.</span><span class="n">GetPlace</span><span class="p">());</span>
    <span class="k">auto</span><span class="o">*</span> <span class="n">device_context</span> <span class="o">=</span>
        <span class="k">const_cast</span><span class="o">&lt;</span><span class="n">platform</span><span class="o">::</span><span class="n">DeviceContext</span><span class="o">*&gt;</span><span class="p">(</span><span class="n">context</span><span class="p">.</span><span class="n">device_context_</span><span class="p">);</span>
    <span class="n">math</span><span class="o">::</span><span class="n">matmul</span><span class="o">&lt;</span><span class="n">Place</span><span class="p">,</span> <span class="n">T</span><span class="o">&gt;</span><span class="p">(</span><span class="o">*</span><span class="n">X</span><span class="p">,</span> <span class="nb">false</span><span class="p">,</span> <span class="o">*</span><span class="n">Y</span><span class="p">,</span> <span class="nb">false</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="n">Z</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="n">device_context</span><span class="p">);</span>
  <span class="p">}</span>
<span class="p">};</span>
</pre></div>
</div>
<p><code class="docutils literal"><span class="pre">MulKernel</span></code>继承自<code class="docutils literal"><span class="pre">framework::OpKernel</span></code>,带有模板参数:</p>
<ul class="simple">
<li><code class="docutils literal"><span class="pre">typename</span> <span class="pre">Place</span></code>: 表示设备类型,不同设备(CPU、GPU)共享同一个Kernel时,需加该模板参数,不共享则不加,一个不共享的例子是<a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/cross_entropy_op.h#L43"><code class="docutils literal"><span class="pre">OnehotCrossEntropyOpKernel</span></code></a></li>
<li><code class="docutils literal"><span class="pre">typename</span> <span class="pre">T</span></code> : 表示数据类型,如<code class="docutils literal"><span class="pre">float</span></code>, <code class="docutils literal"><span class="pre">double</span></code>等。</li>
</ul>
<p><code class="docutils literal"><span class="pre">MulKernel</span></code>需要重写<code class="docutils literal"><span class="pre">Compute</span></code>接口,该接口参数为<code class="docutils literal"><span class="pre">const</span> <span class="pre">framework::ExecutionContext&amp;</span> <span class="pre">context</span></code>, <code class="docutils literal"><span class="pre">ExecutionContext</span></code>相比<code class="docutils literal"><span class="pre">InferShapeContext</span></code>增加了设备类型,同样可获取到输入输出和属性参数,<code class="docutils literal"><span class="pre">Compute</span></code>函数里写具体实现时。</p>
<p>注意,不同设备(CPU、GPU)共享一个Op定义,是否则共享同一个<code class="docutils literal"><span class="pre">OpKernel</span></code>,取决于<code class="docutils literal"><span class="pre">Compute</span></code>调用的函数是否支持不同设备。<code class="docutils literal"><span class="pre">MulOp</span></code>的CPU、GPU实现共享同一个<code class="docutils literal"><span class="pre">Kernel</span></code><code class="docutils literal"><span class="pre">OpKernel</span></code>不共享的例子可以参考<a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/cross_entropy_op.h#L43"><code class="docutils literal"><span class="pre">OnehotCrossEntropyOpKernel</span></code></a></p>
<p>到此前向Op实现完成,需要在<code class="docutils literal"><span class="pre">.cc</span></code>文件中注册该op和kernel。反向Op类的定义和Kernel定义与前向Op类似,这里不再重复。但注意,反向Op没有<code class="docutils literal"><span class="pre">ProtoMaker</span></code></p>
</div>
340 341
<div class="section" id="operator">
<span id="id3"></span><h3>4. 注册Operator<a class="headerlink" href="#operator" title="永久链接至标题"></a></h3>
342 343
<p><code class="docutils literal"><span class="pre">.cc</span></code>文件中注册前向、反向Op类,注册CPU Kernel。</p>
<div class="highlight-c++"><div class="highlight"><pre><span></span><span class="k">namespace</span> <span class="n">ops</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">::</span><span class="n">operators</span><span class="p">;</span>
344
<span class="n">REGISTER_OP</span><span class="p">(</span><span class="n">mul</span><span class="p">,</span> <span class="n">ops</span><span class="o">::</span><span class="n">MulOp</span><span class="p">,</span> <span class="n">ops</span><span class="o">::</span><span class="n">MulOpMaker</span><span class="p">,</span> <span class="n">mul_grad</span><span class="p">,</span> <span class="n">ops</span><span class="o">::</span><span class="n">MulOpGrad</span><span class="p">);</span>
345 346 347 348 349 350
<span class="n">REGISTER_OP_CPU_KERNEL</span><span class="p">(</span><span class="n">mul</span><span class="p">,</span> <span class="n">ops</span><span class="o">::</span><span class="n">MulKernel</span><span class="o">&lt;</span><span class="n">paddle</span><span class="o">::</span><span class="n">platform</span><span class="o">::</span><span class="n">CPUPlace</span><span class="p">,</span> <span class="kt">float</span><span class="o">&gt;</span><span class="p">);</span>
<span class="n">REGISTER_OP_CPU_KERNEL</span><span class="p">(</span><span class="n">mul_grad</span><span class="p">,</span>
              <span class="n">ops</span><span class="o">::</span><span class="n">MulGradKernel</span><span class="o">&lt;</span><span class="n">paddle</span><span class="o">::</span><span class="n">platform</span><span class="o">::</span><span class="n">CPUPlace</span><span class="p">,</span> <span class="kt">float</span><span class="o">&gt;</span><span class="p">);</span>
</pre></div>
</div>
<ul class="simple">
351
<li><code class="docutils literal"><span class="pre">REGISTER_OP</span></code> : 注册<code class="docutils literal"><span class="pre">ops::MulOp</span></code>类,类型名为<code class="docutils literal"><span class="pre">mul</span></code>,该类的<code class="docutils literal"><span class="pre">ProtoMaker</span></code><code class="docutils literal"><span class="pre">ops::MulOpMaker</span></code>,注册<code class="docutils literal"><span class="pre">ops::MulOpGrad</span></code>,类型名为<code class="docutils literal"><span class="pre">mul_grad</span></code></li>
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
<li><code class="docutils literal"><span class="pre">REGISTER_OP_WITHOUT_GRADIENT</span></code> : 用于注册没有反向的Op。</li>
<li><code class="docutils literal"><span class="pre">REGISTER_OP_CPU_KERNEL</span></code> :注册<code class="docutils literal"><span class="pre">ops::MulKernel</span></code>类,并特化模板参数为<code class="docutils literal"><span class="pre">paddle::platform::CPUPlace</span></code><code class="docutils literal"><span class="pre">float</span></code>类型,同理,注册<code class="docutils literal"><span class="pre">ops::MulKernel</span></code>类。</li>
</ul>
<p><code class="docutils literal"><span class="pre">.cu</span></code>文件中注册GPU Kernel。</p>
<div class="highlight-c++"><div class="highlight"><pre><span></span><span class="k">namespace</span> <span class="n">ops</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">::</span><span class="n">operators</span><span class="p">;</span>
<span class="n">REGISTER_OP_GPU_KERNEL</span><span class="p">(</span><span class="n">mul</span><span class="p">,</span> <span class="n">ops</span><span class="o">::</span><span class="n">MulKernel</span><span class="o">&lt;</span><span class="n">paddle</span><span class="o">::</span><span class="n">platform</span><span class="o">::</span><span class="n">GPUPlace</span><span class="p">,</span> <span class="kt">float</span><span class="o">&gt;</span><span class="p">);</span>
<span class="n">REGISTER_OP_GPU_KERNEL</span><span class="p">(</span><span class="n">mul_grad</span><span class="p">,</span>
                       <span class="n">ops</span><span class="o">::</span><span class="n">MulGradKernel</span><span class="o">&lt;</span><span class="n">paddle</span><span class="o">::</span><span class="n">platform</span><span class="o">::</span><span class="n">GPUPlace</span><span class="p">,</span> <span class="kt">float</span><span class="o">&gt;</span><span class="p">);</span>
</pre></div>
</div>
</div>
<div class="section" id="">
<span id="id4"></span><h3>5. 编译<a class="headerlink" href="#" title="永久链接至标题"></a></h3>
<p><a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/CMakeLists.txt">paddle/operators/CMakeLists.txt</a>文件中添加编译。</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="n">op_library</span><span class="p">(</span><span class="n">mul_op</span> <span class="n">SRCS</span> <span class="n">mul_op</span><span class="o">.</span><span class="n">cc</span> <span class="n">mul_op</span><span class="o">.</span><span class="n">cu</span> <span class="n">DEPS</span> <span class="n">math_function</span><span class="p">)</span>
</pre></div>
</div>
<p>下面命令可以编译:</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="n">make</span> <span class="n">mul_op</span>
</pre></div>
</div>
</div>
</div>
<div class="section" id="python">
<span id="python"></span><h2>绑定Python<a class="headerlink" href="#python" title="永久链接至标题"></a></h2>
<ul>
<li><p class="first">绑定Python</p>
<p><a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/pybind/pybind.cc"><code class="docutils literal"><span class="pre">paddle/pybind/pybind.cc</span></code></a>文件中添加该类:</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="n">USE_OP</span><span class="p">(</span><span class="n">mul</span><span class="p">);</span>
</pre></div>
</div>
<p>如果只实现了CPU版本,则使用<code class="docutils literal"><span class="pre">USE_CPU_ONLY_OP</span></code>:</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="n">USE_CPU_ONLY_OP</span><span class="p">(</span><span class="n">gather</span><span class="p">);</span>
</pre></div>
</div>
<p>使用<code class="docutils literal"><span class="pre">USE_OP</span></code>告知编译器需要链接该Op的目标文件,具体解释参考<a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/op_registry.h#L81">代码注释</a></p>
</li>
</ul>
<ul>
<li><p class="first">生成库</p>
<p><a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/pybind/CMakeLists.txt"><code class="docutils literal"><span class="pre">paddle/pybind/CMakeLists.txt</span></code></a>文件添加类到<code class="docutils literal"><span class="pre">DEPS</span></code>中,使得该Op可以链接到生成的lib库中。</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="k">if</span><span class="p">(</span><span class="n">WITH_PYTHON</span><span class="p">)</span>
  <span class="n">cc_library</span><span class="p">(</span><span class="n">paddle_pybind</span> <span class="n">SHARED</span>
  <span class="n">SRCS</span> <span class="n">pybind</span><span class="o">.</span><span class="n">cc</span>
  <span class="n">DEPS</span> <span class="n">pybind</span> <span class="n">python</span> <span class="n">backward</span>
  <span class="n">mul_op</span>
  <span class="n">minus_op</span><span class="p">)</span>
<span class="n">endif</span><span class="p">(</span><span class="n">WITH_PYTHON</span><span class="p">)</span>
</pre></div>
</div>
</li>
</ul>
</div>
<div class="section" id="">
<span id="id5"></span><h2>实现单元测试<a class="headerlink" href="#" title="永久链接至标题"></a></h2>
<p>单测包括对比前向Op不同设备(CPU、GPU)的实现、对比反向OP不同设备(CPU、GPU)的实现、反向Op的梯度测试。下面介绍介绍<a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/v2/framework/tests/test_mul_op.py"><code class="docutils literal"><span class="pre">MulOp</span></code>的单测</a></p>
<div class="section" id="operator">
<span id="id6"></span><h3>前向Operator单测<a class="headerlink" href="#operator" title="永久链接至标题"></a></h3>
<p>前向Op单测继承自<code class="docutils literal"><span class="pre">unittest.TestCase</span></code>,并定义元类<code class="docutils literal"><span class="pre">__metaclass__</span> <span class="pre">=</span> <span class="pre">OpTestMeta</span></code>,具体单测流程在<code class="docutils literal"><span class="pre">OpTestMeta</span></code>里完成。需在<code class="docutils literal"><span class="pre">setUp</span></code>函数定义输入输出和属性参数,以及Python对比的输出值。</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">unittest</span>
<span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
<span class="kn">from</span> <span class="nn">gradient_checker</span> <span class="k">import</span> <span class="n">GradientChecker</span><span class="p">,</span> <span class="n">create_op</span>
<span class="kn">from</span> <span class="nn">op_test_util</span> <span class="k">import</span> <span class="n">OpTestMeta</span>

<span class="k">class</span> <span class="nc">TestMulOp</span><span class="p">(</span><span class="n">unittest</span><span class="o">.</span><span class="n">TestCase</span><span class="p">):</span>
    <span class="n">__metaclass__</span> <span class="o">=</span> <span class="n">OpTestMeta</span>

    <span class="k">def</span> <span class="nf">setUp</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">type</span> <span class="o">=</span> <span class="s2">&quot;mul&quot;</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">inputs</span> <span class="o">=</span> <span class="p">{</span>
            <span class="s1">&#39;X&#39;</span><span class="p">:</span> <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">random</span><span class="p">((</span><span class="mi">32</span><span class="p">,</span> <span class="mi">84</span><span class="p">))</span><span class="o">.</span><span class="n">astype</span><span class="p">(</span><span class="s2">&quot;float32&quot;</span><span class="p">),</span>
            <span class="s1">&#39;Y&#39;</span><span class="p">:</span> <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">random</span><span class="p">((</span><span class="mi">84</span><span class="p">,</span> <span class="mi">100</span><span class="p">))</span><span class="o">.</span><span class="n">astype</span><span class="p">(</span><span class="s2">&quot;float32&quot;</span><span class="p">)</span>
        <span class="p">}</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">outputs</span> <span class="o">=</span> <span class="p">{</span><span class="s1">&#39;Out&#39;</span><span class="p">:</span> <span class="n">np</span><span class="o">.</span><span class="n">dot</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">inputs</span><span class="p">[</span><span class="s1">&#39;X&#39;</span><span class="p">],</span> <span class="bp">self</span><span class="o">.</span><span class="n">inputs</span><span class="p">[</span><span class="s1">&#39;Y&#39;</span><span class="p">])}</span>
</pre></div>
</div>
<p>首先需要<code class="docutils literal"><span class="pre">import</span></code>必要的包,下面详细解释其他值:</p>
<ul class="simple">
<li><code class="docutils literal"><span class="pre">self.type</span> <span class="pre">=</span> <span class="pre">&quot;mul&quot;</span></code> : 定义类型,和注册的类型一致。</li>
<li><code class="docutils literal"><span class="pre">self.inputs</span></code> : 定义输入,类型为Numpy.array,并初始化。</li>
<li><code class="docutils literal"><span class="pre">self.outputs</span></code> : 定义输出,并得到Python结算结果。</li>
</ul>
</div>
<div class="section" id="operator">
<span id="id7"></span><h3>反向Operator单测<a class="headerlink" href="#operator" title="永久链接至标题"></a></h3>
<p>反向Op单测继承自<code class="docutils literal"><span class="pre">GradientChecker</span></code>,而<code class="docutils literal"><span class="pre">GradientChecker</span></code>集成自<code class="docutils literal"><span class="pre">unittest.TestCase</span></code>,所以反向单测函数需要<code class="docutils literal"><span class="pre">test_</span></code>开头。</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="k">class</span> <span class="nc">MulGradOpTest</span><span class="p">(</span><span class="n">GradientChecker</span><span class="p">):</span>
   <span class="k">def</span> <span class="nf">test_mul</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
       <span class="n">op</span> <span class="o">=</span> <span class="n">create_op</span><span class="p">(</span><span class="s2">&quot;mul&quot;</span><span class="p">)</span>
       <span class="n">inputs</span> <span class="o">=</span> <span class="p">{</span>
           <span class="s1">&#39;X&#39;</span><span class="p">:</span> <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">random</span><span class="p">((</span><span class="mi">32</span><span class="p">,</span> <span class="mi">84</span><span class="p">))</span><span class="o">.</span><span class="n">astype</span><span class="p">(</span><span class="s2">&quot;float32&quot;</span><span class="p">),</span>
           <span class="s1">&#39;Y&#39;</span><span class="p">:</span> <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">random</span><span class="p">((</span><span class="mi">84</span><span class="p">,</span> <span class="mi">100</span><span class="p">))</span><span class="o">.</span><span class="n">astype</span><span class="p">(</span><span class="s2">&quot;float32&quot;</span><span class="p">)</span>
       <span class="p">}</span>
       <span class="bp">self</span><span class="o">.</span><span class="n">compare_grad</span><span class="p">(</span><span class="n">op</span><span class="p">,</span> <span class="n">inputs</span><span class="p">)</span>      
       <span class="c1"># mul op will enlarge the relative error</span>
       <span class="bp">self</span><span class="o">.</span><span class="n">check_grad</span><span class="p">(</span>
           <span class="n">op</span><span class="p">,</span> <span class="n">inputs</span><span class="p">,</span> <span class="nb">set</span><span class="p">([</span><span class="s2">&quot;X&quot;</span><span class="p">,</span> <span class="s2">&quot;Y&quot;</span><span class="p">]),</span> <span class="s2">&quot;Out&quot;</span><span class="p">,</span> <span class="n">max_relative_error</span><span class="o">=</span><span class="mf">0.5</span><span class="p">)</span>
</pre></div>
</div>
<ul class="simple">
<li>调用<code class="docutils literal"><span class="pre">create_op(&quot;mul&quot;)</span></code>创建反向Op对应的前向Op。</li>
<li>定义输入<code class="docutils literal"><span class="pre">inputs</span></code></li>
<li>调用<code class="docutils literal"><span class="pre">compare_grad</span></code>函数对比CPU、GPU计算结果。</li>
455 456 457 458 459 460 461
<li>调用<code class="docutils literal"><span class="pre">check_grad</span></code>检查梯度稳定性,这里采用数值法检测梯度正确性。<ul>
<li>第一个参数<code class="docutils literal"><span class="pre">op</span></code> : 前向op。</li>
<li>第二个参数<code class="docutils literal"><span class="pre">inputs</span></code> : 输入词典,词典的Key和<code class="docutils literal"><span class="pre">ProtoMaker</span></code>定义保持一致。</li>
<li>第三个参数<code class="docutils literal"><span class="pre">set([&quot;X&quot;,</span> <span class="pre">&quot;Y&quot;])</span></code> : 指定对输入变量<code class="docutils literal"><span class="pre">X</span></code><code class="docutils literal"><span class="pre">Y</span></code>做梯度检测。</li>
<li>第四个参数<code class="docutils literal"><span class="pre">&quot;Out&quot;</span></code> : 指定前向网络最终的输出目标变量<code class="docutils literal"><span class="pre">Out</span></code></li>
</ul>
</li>
462 463
</ul>
</div>
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
<div class="section" id="">
<span id="id8"></span><h3>编译和执行<a class="headerlink" href="#" title="永久链接至标题"></a></h3>
<p>单测完成之后,在<a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/v2/framework/tests/CMakeLists.txt"><code class="docutils literal"><span class="pre">python/paddle/v2/framework/tests/CMakeLists.txt</span></code></a>里添加编译:</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="n">py_test</span><span class="p">(</span><span class="n">test_mul_op</span> <span class="n">SRCS</span> <span class="n">test_mul_op</span><span class="o">.</span><span class="n">py</span><span class="p">)</span>
</pre></div>
</div>
<p>编译时需要打开<code class="docutils literal"><span class="pre">WITH_TESTING</span></code>, 即 <code class="docutils literal"><span class="pre">cmake</span> <span class="pre">paddle_dir</span> <span class="pre">-DWITH_TESTING=ON</span></code>,编译成功之后执行单测命令为:</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="n">make</span> <span class="n">test</span> <span class="n">ARGS</span><span class="o">=</span><span class="s2">&quot;-R test_mul_op -V&quot;</span>
</pre></div>
</div>
<p>或者:</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="n">ctest</span> <span class="o">-</span><span class="n">R</span> <span class="n">test_mul_op</span>
</pre></div>
</div>
</div>
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
</div>
</div>


           </div>
          </div>
          <footer>
  

  <hr/>

  <div role="contentinfo">
    <p>
        &copy; Copyright 2016, PaddlePaddle developers.

    </p>
  </div>
  Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>. 

</footer>

        </div>
      </div>

    </section>

  </div>
  


  

    <script type="text/javascript">
        var DOCUMENTATION_OPTIONS = {
            URL_ROOT:'../../',
            VERSION:'',
            COLLAPSE_INDEX:false,
            FILE_SUFFIX:'.html',
            HAS_SOURCE:  true,
            SOURCELINK_SUFFIX: ".txt",
        };
    </script>
      <script type="text/javascript" src="../../_static/jquery.js"></script>
      <script type="text/javascript" src="../../_static/underscore.js"></script>
      <script type="text/javascript" src="../../_static/doctools.js"></script>
      <script type="text/javascript" src="../../_static/translations.js"></script>
      <script type="text/javascript" src="https://cdn.bootcss.com/mathjax/2.7.0/MathJax.js"></script>
       
  

  
  
    <script type="text/javascript" src="../../_static/js/theme.js"></script>
  
  
  <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js" integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa" crossorigin="anonymous"></script>
  <script src="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/js/perfect-scrollbar.jquery.min.js"></script>
  <script src="../../_static/js/paddle_doc_init.js"></script> 

</body>
</html>