test_engine.cc 6.1 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <cuda.h>
#include <cuda_runtime_api.h>
#include <glog/logging.h>
#include <gtest/gtest.h>

20
#include "paddle/fluid/inference/tensorrt/engine.h"
Y
Yan Chunwei 已提交
21 22 23 24 25 26 27 28 29
#include "paddle/fluid/platform/enforce.h"

namespace paddle {
namespace inference {
namespace tensorrt {

class TensorRTEngineTest : public ::testing::Test {
 protected:
  void SetUp() override {
N
nhzlx 已提交
30
    // ASSERT_EQ(0, cudaStreamCreate(&stream_));
31
    engine_ = new TensorRTEngine(10, 1 << 10, &stream_);
Y
Yan Chunwei 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
    engine_->InitNetwork();
  }

  void TearDown() override {
    delete engine_;
    cudaStreamDestroy(stream_);
  }

 protected:
  TensorRTEngine* engine_;
  cudaStream_t stream_;
};

TEST_F(TensorRTEngineTest, add_layer) {
  const int size = 1;

  float raw_weight[size] = {2.};  // Weight in CPU memory.
  float raw_bias[size] = {3.};

  LOG(INFO) << "create weights";
  TensorRTEngine::Weight weight(nvinfer1::DataType::kFLOAT, raw_weight, size);
  TensorRTEngine::Weight bias(nvinfer1::DataType::kFLOAT, raw_bias, size);
  auto* x = engine_->DeclareInput("x", nvinfer1::DataType::kFLOAT,
                                  nvinfer1::DimsCHW{1, 1, 1});
  auto* fc_layer = TRT_ENGINE_ADD_LAYER(engine_, FullyConnected, *x, size,
                                        weight.get(), bias.get());
  PADDLE_ENFORCE(fc_layer != nullptr);

  engine_->DeclareOutput(fc_layer, 0, "y");
  LOG(INFO) << "freeze network";
  engine_->FreezeNetwork();
  ASSERT_EQ(engine_->engine()->getNbBindings(), 2);

  // fill in real data
  float x_v = 1234;
67 68
  engine_->SetInputFromCPU("x", reinterpret_cast<void*>(&x_v),
                           1 * sizeof(float));
Y
Yan Chunwei 已提交
69 70 71 72 73
  LOG(INFO) << "to execute";
  engine_->Execute(1);

  LOG(INFO) << "to get output";
  float y_cpu;
N
nhzlx 已提交
74
  engine_->GetOutputInCPU("y", &y_cpu, 1 * sizeof(float));
Y
Yan Chunwei 已提交
75 76 77 78 79

  LOG(INFO) << "to checkout output";
  ASSERT_EQ(y_cpu, x_v * 2 + 3);
}

X
Xin Pan 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
TEST_F(TensorRTEngineTest, add_layer_multi_dim) {
  // Weight in CPU memory.
  // It seems tensorrt FC use col-major: [[1.0, 3.3], [1.1, 4.4]]
  // instead of row-major, which is [[1.0, 1.1], [3.3, 4.4]]
  float raw_weight[4] = {1.0, 1.1, 3.3, 4.4};
  float raw_bias[2] = {1.3, 2.4};

  TensorRTEngine::Weight weight(nvinfer1::DataType::kFLOAT, raw_weight, 4);
  TensorRTEngine::Weight bias(nvinfer1::DataType::kFLOAT, raw_bias, 2);
  auto* x = engine_->DeclareInput("x", nvinfer1::DataType::kFLOAT,
                                  nvinfer1::DimsCHW{1, 2, 1});
  auto* fc_layer = TRT_ENGINE_ADD_LAYER(engine_, FullyConnected, *x, 2,
                                        weight.get(), bias.get());
  PADDLE_ENFORCE(fc_layer != nullptr);

  engine_->DeclareOutput(fc_layer, 0, "y");
  engine_->FreezeNetwork();
  ASSERT_EQ(engine_->engine()->getNbBindings(), 2);

  float x_v[2] = {1.0, 2.0};
  engine_->SetInputFromCPU("x", reinterpret_cast<void*>(&x_v),
L
Lei Wang 已提交
101
                           2 * sizeof(float));
X
Xin Pan 已提交
102 103 104 105
  engine_->Execute(1);

  LOG(INFO) << "to get output";
  float y_cpu[2] = {-1., -1.};
N
nhzlx 已提交
106

107 108 109 110
  auto dims = engine_->GetITensor("y")->getDimensions();
  ASSERT_EQ(dims.nbDims, 3);
  ASSERT_EQ(dims.d[0], 2);
  ASSERT_EQ(dims.d[1], 1);
N
nhzlx 已提交
111
  engine_->GetOutputInCPU("y", &y_cpu[0], 2 * sizeof(float));
X
Xin Pan 已提交
112 113 114 115
  ASSERT_EQ(y_cpu[0], 4.5);
  ASSERT_EQ(y_cpu[1], 14.5);
}

116
TEST_F(TensorRTEngineTest, test_conv2d) {
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
  // Weight in CPU memory.
  float raw_weight[9] = {1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0};
  float raw_bias[1] = {0};

  TensorRTEngine::Weight weight(nvinfer1::DataType::kFLOAT, raw_weight, 9);
  TensorRTEngine::Weight bias(nvinfer1::DataType::kFLOAT, raw_bias, 1);
  auto* x = engine_->DeclareInput("x", nvinfer1::DataType::kFLOAT,
                                  nvinfer1::Dims3{1, 3, 3});
  auto* conv_layer =
      TRT_ENGINE_ADD_LAYER(engine_, Convolution, *x, 1, nvinfer1::DimsHW{3, 3},
                           weight.get(), bias.get());
  PADDLE_ENFORCE(conv_layer != nullptr);
  conv_layer->setStride(nvinfer1::DimsHW{1, 1});
  conv_layer->setPadding(nvinfer1::DimsHW{1, 1});

  engine_->DeclareOutput(conv_layer, 0, "y");
  engine_->FreezeNetwork();
  ASSERT_EQ(engine_->engine()->getNbBindings(), 2);

  float x_v[18] = {1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
                   1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0};
  engine_->SetInputFromCPU("x", reinterpret_cast<void*>(&x_v),
                           18 * sizeof(float));
  engine_->Execute(2);

  LOG(INFO) << "to get output";
  float* y_cpu = new float[18];
N
nhzlx 已提交
144
  engine_->GetOutputInCPU("y", &y_cpu[0], 18 * sizeof(float));
145 146 147 148
  ASSERT_EQ(y_cpu[0], 4.0);
  ASSERT_EQ(y_cpu[1], 6.0);
}

149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
TEST_F(TensorRTEngineTest, test_pool2d) {
  // Weight in CPU memory.
  auto* x = engine_->DeclareInput("x", nvinfer1::DataType::kFLOAT,
                                  nvinfer1::Dims3{1, 2, 2});

  nvinfer1::PoolingType pool_t = nvinfer1::PoolingType::kAVERAGE;
  auto* pool_layer =
      TRT_ENGINE_ADD_LAYER(engine_, Pooling, *const_cast<nvinfer1::ITensor*>(x),
                           pool_t, nvinfer1::DimsHW{2, 2});

  PADDLE_ENFORCE(pool_layer != nullptr);
  pool_layer->setStride(nvinfer1::DimsHW{1, 1});
  pool_layer->setPadding(nvinfer1::DimsHW{0, 0});

  engine_->DeclareOutput(pool_layer, 0, "y");
  engine_->FreezeNetwork();
  ASSERT_EQ(engine_->engine()->getNbBindings(), 2);

  float x_v[8] = {1.0, 2.0, 5.0, 0.0, 2.0, 3.0, 5.0, 10.0};
  engine_->SetInputFromCPU("x", reinterpret_cast<void*>(&x_v),
                           8 * sizeof(float));
  engine_->Execute(2);

  LOG(INFO) << "to get output";
  float* y_cpu = new float[2];
  engine_->GetOutputInCPU("y", &y_cpu[0], 2 * sizeof(float));

  ASSERT_EQ(y_cpu[0], 2.0);
  ASSERT_EQ(y_cpu[1], 5.0);
}

Y
Yan Chunwei 已提交
180 181 182
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle