mkl_packed.html 21.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127


<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
  <meta charset="utf-8">
  
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  
  <title>Intel® MKL Packed on PaddlePaddle: Design Doc &mdash; PaddlePaddle  文档</title>
  

  
  

  

  
  
    

  

  
  
    <link rel="stylesheet" href="../../_static/css/theme.css" type="text/css" />
  

  
  
        <link rel="index" title="索引"
              href="../../genindex.html"/>
        <link rel="search" title="搜索" href="../../search.html"/>
    <link rel="top" title="PaddlePaddle  文档" href="../../index.html"/> 

  <link rel="stylesheet" href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" type="text/css" />
  <link rel="stylesheet" href="../../_static/css/override.css" type="text/css" />
  <script>
  var _hmt = _hmt || [];
  (function() {
    var hm = document.createElement("script");
    hm.src = "//hm.baidu.com/hm.js?b9a314ab40d04d805655aab1deee08ba";
    var s = document.getElementsByTagName("script")[0]; 
    s.parentNode.insertBefore(hm, s);
  })();
  </script>

  

  
  <script src="../../_static/js/modernizr.min.js"></script>

</head>

<body class="wy-body-for-nav" role="document">

  
  <header class="site-header">
    <div class="site-logo">
      <a href="/"><img src="../../_static/images/PP_w.png"></a>
    </div>
    <div class="site-nav-links">
      <div class="site-menu">
        <a class="fork-on-github" href="https://github.com/PaddlePaddle/Paddle" target="_blank"><i class="fa fa-github"></i>Fork me on Github</a>
        <div class="language-switcher dropdown">
          <a type="button" data-toggle="dropdown">
            <span>English</span>
            <i class="fa fa-angle-up"></i>
            <i class="fa fa-angle-down"></i>
          </a>
          <ul class="dropdown-menu">
            <li><a href="/doc_cn">中文</a></li>
            <li><a href="/doc">English</a></li>
          </ul>
        </div>
        <ul class="site-page-links">
          <li><a href="/">Home</a></li>
        </ul>
      </div>
      <div class="doc-module">
        
        <ul>
<li class="toctree-l1"><a class="reference internal" href="../../getstarted/index_cn.html">新手入门</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../howto/index_cn.html">进阶指南</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../api/index_cn.html">API</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../faq/index_cn.html">FAQ</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../mobile/index_cn.html">MOBILE</a></li>
</ul>

        
<div role="search">
  <form id="rtd-search-form" class="wy-form" action="../../search.html" method="get">
    <input type="text" name="q" placeholder="Search docs" />
    <input type="hidden" name="check_keywords" value="yes" />
    <input type="hidden" name="area" value="default" />
  </form>
</div>        
      </div>
    </div>
  </header>
  
  <div class="main-content-wrap">

    
    <nav class="doc-menu-vertical" role="navigation">
        
          
          <ul>
<li class="toctree-l1"><a class="reference internal" href="../../getstarted/index_cn.html">新手入门</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../getstarted/build_and_install/index_cn.html">安装与编译</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../getstarted/build_and_install/pip_install_cn.html">使用pip安装</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../getstarted/build_and_install/docker_install_cn.html">使用Docker安装运行</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/dev/build_cn.html">用Docker编译和测试PaddlePaddle</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../getstarted/build_and_install/build_from_source_cn.html">从源码编译</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../getstarted/concepts/use_concepts_cn.html">基本使用概念</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../howto/index_cn.html">进阶指南</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../howto/usage/cmd_parameter/index_cn.html">设置命令行参数</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../howto/usage/cmd_parameter/use_case_cn.html">使用案例</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/usage/cmd_parameter/arguments_cn.html">参数概述</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/usage/cmd_parameter/detail_introduction_cn.html">细节描述</a></li>
</ul>
</li>
128 129 130 131 132 133 134 135
<li class="toctree-l2"><a class="reference internal" href="../../howto/usage/cluster/cluster_train_cn.html">PaddlePaddle分布式训练</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../howto/usage/cluster/fabric_cn.html">fabric</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/usage/cluster/openmpi_cn.html">openmpi</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/usage/cluster/k8s_cn.html">kubernetes</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/usage/cluster/k8s_distributed_cn.html">kubernetes distributed</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/usage/cluster/k8s_aws_cn.html">kubernetes on AWS</a></li>
</ul>
</li>
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
<li class="toctree-l2"><a class="reference internal" href="../../howto/dev/contribute_to_paddle_cn.html">如何贡献代码</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/dev/write_docs_cn.html">如何贡献/修改文档</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/deep_model/rnn/index_cn.html">RNN相关模型</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../howto/deep_model/rnn/rnn_config_cn.html">RNN配置</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/deep_model/rnn/recurrent_group_cn.html">Recurrent Group教程</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/deep_model/rnn/hierarchical_layer_cn.html">支持双层序列作为输入的Layer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/deep_model/rnn/hrnn_rnn_api_compare_cn.html">单双层RNN API对比介绍</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/optimization/gpu_profiling_cn.html">GPU性能分析与调优</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../api/index_cn.html">API</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/model_configs.html">模型配置</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/activation.html">Activation</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/layer.html">Layers</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/evaluators.html">Evaluators</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/optimizer.html">Optimizer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/pooling.html">Pooling</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/networks.html">Networks</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/data.html">数据访问</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/data/data_reader.html">Data Reader Interface</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/data/image.html">Image Interface</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/data/dataset.html">Dataset</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/run_logic.html">训练与应用</a></li>
166 167 168 169 170 171 172 173 174 175 176 177 178
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/fluid.html">Fluid</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/fluid/layers.html">Layers</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/fluid/data_feeder.html">DataFeeder</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/fluid/executor.html">Executor</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/fluid/initializer.html">Initializer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/fluid/evaluator.html">Evaluator</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/fluid/nets.html">Nets</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/fluid/optimizer.html">Optimizer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/fluid/param_attr.html">ParamAttr</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/fluid/profiler.html">Profiler</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/fluid/regularizer.html">Regularizer</a></li>
</ul>
</li>
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../faq/index_cn.html">FAQ</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../faq/build_and_install/index_cn.html">编译安装与单元测试</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../faq/model/index_cn.html">模型配置</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../faq/parameter/index_cn.html">参数设置</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../faq/local/index_cn.html">本地训练与预测</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../faq/cluster/index_cn.html">集群训练与预测</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../mobile/index_cn.html">MOBILE</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../mobile/cross_compiling_for_android_cn.html">Android平台编译指南</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../mobile/cross_compiling_for_ios_cn.html">iOS平台编译指南</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../mobile/cross_compiling_for_raspberry_cn.html">Raspberry Pi平台编译指南</a></li>
</ul>
</li>
</ul>

        
    </nav>
    
    <section class="doc-content-wrap">

      

 







<div role="navigation" aria-label="breadcrumbs navigation">
  <ul class="wy-breadcrumbs">
      
    <li>Intel® MKL Packed on PaddlePaddle: Design Doc</li>
  </ul>
</div>
      
      <div class="wy-nav-content" id="doc-content">
        <div class="rst-content">
          <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
           <div itemprop="articleBody">
            
  <div class="section" id="intel-mkl-packed-on-paddlepaddle-design-doc">
<span id="intel-mkl-packed-on-paddlepaddle-design-doc"></span><h1>Intel® MKL Packed on PaddlePaddle: Design Doc<a class="headerlink" href="#intel-mkl-packed-on-paddlepaddle-design-doc" title="永久链接至标题"></a></h1>
<div class="section" id="contents">
<span id="contents"></span><h2>Contents<a class="headerlink" href="#contents" title="永久链接至标题"></a></h2>
<ul class="simple">
<li><a class="reference external" href="#overview">Overview</a></li>
<li><a class="reference external" href="#key-points">Key Points</a><ul>
<li><a class="reference external" href="#background">Background</a></li>
<li><a class="reference external" href="#solution">Solution</a></li>
</ul>
</li>
<li><a class="reference external" href="#actions">Actions</a><ul>
<li><a class="reference external" href="#cmake">CMake</a></li>
<li><a class="reference external" href="#layers">Layers</a></li>
<li><a class="reference external" href="#unit-tests">Unit Tests</a></li>
<li><a class="reference external" href="#python-api">Python API</a></li>
<li><a class="reference external" href="#benchmarking">Benchmarking</a></li>
</ul>
</li>
</ul>
</div>
<div class="section" id="overview">
<span id="overview"></span><h2>Overview<a class="headerlink" href="#overview" title="永久链接至标题"></a></h2>
<p>我们计划将 Intel® MKL 中引入的 GEMM Packed APIs[<a class="reference external" href="#references">1</a>] 集成到 PaddlePaddle 中,充分发挥英特尔平台的优势,有效提升PaddlePaddle在英特尔架构上的性能。
现阶段的优化主要针对 Recurrent Neural Network(以下简称RNN)相关层(包括<code class="docutils literal"><span class="pre">RecurrentLayer</span></code>, <code class="docutils literal"><span class="pre">GatedRecurrentLayer</span></code><code class="docutils literal"><span class="pre">LstmLayer</span></code>), 以及 PaddlePaddle V1 API。</p>
</div>
<div class="section" id="key-points">
<span id="key-points"></span><h2>Key Points<a class="headerlink" href="#key-points" title="永久链接至标题"></a></h2>
<div class="section" id="background">
<span id="background"></span><h3>Background<a class="headerlink" href="#background" title="永久链接至标题"></a></h3>
<p>目前PaddlePaddle采用了 Intel® MKL库的<a class="reference external" href="https://software.intel.com/en-us/mkl-developer-reference-c-cblas-gemm">cblas_?gemm</a>函数,这个函数本身会在计算前将原数据转换为更适合英特尔平台的内部格式。</p>
<ol class="simple">
<li>转换耗时 这一数据格式的转换操作(Packing),在问题本身的计算量比较小的时候,显得相对来说较为耗时。例如在DeepSpeech2 [<a class="reference external" href="#references">2</a>] 的Vanilla RNN部分中,矩阵大小是<code class="docutils literal"><span class="pre">batch_size</span> <span class="pre">*</span> <span class="pre">2048</span></code></li>
<li>转换冗余 由于在现有的某些情况下(例如RNN),多次调用 cblas_?gemm 会使用相同的原数据,因此,每次调用时对原数据的重复Packing便成为了冗余。</li>
</ol>
<p>为了最大程度减少多次调用 cblas_?gemm 在Packing上的耗时,Intel® MKL 引入了以下四个API:</p>
<ul class="simple">
<li>cblas_?gemm_alloc</li>
<li>cblas_?gemm_pack</li>
<li>cblas_?gemm_compute</li>
<li>cblas_?gemm_free</li>
</ul>
<p>通过使用这些API,我们可以先完成对原数据的Packing操作,再把已转换为Packed格式的数据传递给那些复用同一数据的gemm_compute函数,从而避免了Packing冗余。</p>
</div>
<div class="section" id="solution">
<span id="solution"></span><h3>Solution<a class="headerlink" href="#solution" title="永久链接至标题"></a></h3>
<p>在RNN的情况下,同一次前向、后向(forward/backward)过程中所有时间步(time step)共享同一个权重(weight)。当只做推断(inference)时,各次前向之间也都使用了相同的权重,没有必要在每次前向中每个时间步的计算时对权重进行重复的Packing操作。</p>
<p>我们通过使用新引入的GEMM Packed APIs,在层初始化的时候,先完成对权重的Packing操作,然后在前向,后向时复用已经转换过的权重,并在每次权重更新后,对新的权重进行转换用于下次迭代。</p>
<ul class="simple">
<li>优化前,对于序列长度(sequence length)为<code class="docutils literal"><span class="pre">T</span></code>的网络模型(model), <code class="docutils literal"><span class="pre">N</span></code>次迭代执行的转换次数为:<ul>
<li><code class="docutils literal"><span class="pre">inference</span></code><code class="docutils literal"><span class="pre">N</span> <span class="pre">*</span> <span class="pre">T</span></code></li>
<li><code class="docutils literal"><span class="pre">training</span></code><code class="docutils literal"><span class="pre">2</span> <span class="pre">*</span> <span class="pre">N</span> <span class="pre">*</span> <span class="pre">T</span></code></li>
</ul>
</li>
<li>优化后,对于同样设置的网络模型,其转换次数减少至:<ul>
<li><code class="docutils literal"><span class="pre">inference</span></code><code class="docutils literal"><span class="pre">1</span></code></li>
<li><code class="docutils literal"><span class="pre">training</span></code><code class="docutils literal"><span class="pre">2</span> <span class="pre">*</span> <span class="pre">N</span></code></li>
</ul>
</li>
</ul>
</div>
</div>
<div class="section" id="actions">
<span id="actions"></span><h2>Actions<a class="headerlink" href="#actions" title="永久链接至标题"></a></h2>
<p>添加的相关文件和目录结构如下:</p>
<div class="highlight-txt"><div class="highlight"><pre><span></span>PaddlePaddle/Paddle
├── ...
└── paddle/
    ├── ...
    └── gserver/
        ├── ...
        ├── layers/
        │   ├── ...
        │   ├── MKLPackedRecurrentLayer.*
        |   ├── MKLPackedGatedRecurrentLayer.*
        |   ├── MKLPackedLstmLayer.*
        |   └── MKLPackedGemm.h
        └── tests/
            ├── ...
            └── test_MKLPacked.cpp
</pre></div>
</div>
<div class="section" id="cmake">
<span id="cmake"></span><h3>CMake<a class="headerlink" href="#cmake" title="永久链接至标题"></a></h3>
<p>在对应的<code class="docutils literal"><span class="pre">CMakeLists.txt</span></code>中根据<code class="docutils literal"><span class="pre">WITH_MKL</span></code>是否打开,来决定是否开启MKL Packed相关功能。</p>
</div>
<div class="section" id="layers">
<span id="layers"></span><h3>Layers<a class="headerlink" href="#layers" title="永久链接至标题"></a></h3>
<p>所有的<code class="docutils literal"><span class="pre">MKLPacked*Layer</span></code>都继承于PaddlePaddle的基类<code class="docutils literal"><span class="pre">Layer</span></code>, 并添加头文件 <code class="docutils literal"><span class="pre">MKLPackedGemm.h</span></code>,该文件对相关GEMM Packed APIs做了封装。</p>
</div>
<div class="section" id="unit-tests">
<span id="unit-tests"></span><h3>Unit Tests<a class="headerlink" href="#unit-tests" title="永久链接至标题"></a></h3>
<p>我们会添加<code class="docutils literal"><span class="pre">test_MKLPacked.cpp</span></code>用于MKL Packed优化后layer的测试。
对于每一个新加的RNN layer,我们会对比如下2个方面:</p>
<ol class="simple">
<li>对比优化后layer自身,sequence mode(<code class="docutils literal"><span class="pre">rnn_use_batch=false</span></code>)与batch mode(<code class="docutils literal"><span class="pre">rnn_use_batch=true</span></code>)的结果。</li>
<li>对比优化后layer与相对应的PaddlePaddle原有layer, 在batch mode下的结果。</li>
</ol>
</div>
<div class="section" id="python-api">
<span id="python-api"></span><h3>Python API<a class="headerlink" href="#python-api" title="永久链接至标题"></a></h3>
<p>TBD</p>
</div>
<div class="section" id="benchmarking">
<span id="benchmarking"></span><h3>Benchmarking<a class="headerlink" href="#benchmarking" title="永久链接至标题"></a></h3>
<p>会添加相应的脚本用于测试和对比在使用MKL Packed recurrent layers 前后的网络性能。</p>
</div>
</div>
<div class="section" id="references">
<span id="references"></span><h2>References<a class="headerlink" href="#references" title="永久链接至标题"></a></h2>
<div class="toctree-wrapper compound">
<ul>
<li class="toctree-l1"><a class="reference external" href="https://software.intel.com/en-us/articles/introducing-the-new-packed-apis-for-gemm">Introducing the new Packed APIs for GEMM</a></li>
<li class="toctree-l1"><a class="reference external" href="https://github.com/PaddlePaddle/DeepSpeech#deepspeech2-on-paddlepaddle">DeepSpeech2 on PaddlePaddle</a></li>
</ul>
</div>
</div>
</div>


           </div>
          </div>
          <footer>
  

  <hr/>

  <div role="contentinfo">
    <p>
        &copy; Copyright 2016, PaddlePaddle developers.

    </p>
  </div>
  Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>. 

</footer>

        </div>
      </div>

    </section>

  </div>
  


  

    <script type="text/javascript">
        var DOCUMENTATION_OPTIONS = {
            URL_ROOT:'../../',
            VERSION:'',
            COLLAPSE_INDEX:false,
            FILE_SUFFIX:'.html',
            HAS_SOURCE:  true,
            SOURCELINK_SUFFIX: ".txt",
        };
    </script>
      <script type="text/javascript" src="../../_static/jquery.js"></script>
      <script type="text/javascript" src="../../_static/underscore.js"></script>
      <script type="text/javascript" src="../../_static/doctools.js"></script>
      <script type="text/javascript" src="../../_static/translations.js"></script>
      <script type="text/javascript" src="https://cdn.bootcss.com/mathjax/2.7.0/MathJax.js"></script>
       
  

  
  
    <script type="text/javascript" src="../../_static/js/theme.js"></script>
  
  
  <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js" integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa" crossorigin="anonymous"></script>
  <script src="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/js/perfect-scrollbar.jquery.min.js"></script>
  <script src="../../_static/js/paddle_doc_init.js"></script> 

</body>
</html>