mp_layers.py 19.9 KB
Newer Older
W
wuhuachaocoding 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
16
from paddle.autograd import PyLayer
W
wuhuachaocoding 已提交
17 18
from paddle.fluid import core
from paddle.nn import functional as F
19

W
wuhuachaocoding 已提交
20
from ...base import topology as tp
21 22
from . import mp_ops
from .random import get_rng_state_tracker
W
wuhuachaocoding 已提交
23 24 25 26 27 28 29 30 31

__all__ = []

# Follow this paper to achieve the file:
# Shoeybi M, Patwary M, Puri R, et al. Megatron-lm: Training multi-billion parameter
# language models using model parallelism[J]. arXiv preprint arXiv:1909.08053, 2019. (https://arxiv.org/abs/1909.08053)


def is_fused_matmul_bias_supported():
姜永久 已提交
32
    return hasattr(core.eager.ops.legacy, 'fused_gemm_epilogue')
W
wuhuachaocoding 已提交
33 34


35
class VocabParallelEmbedding(paddle.nn.Layer):
W
wuhuachaocoding 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
    """Embedding mp parallelized in the vocabulary dimension.
    this class is used for splitting embedding in mp group.

    Args:
        num_embeddings(int): One element which indicate the size of the dictionary of embeddings.
        embedding_dim(int): One element which indicate the size of each embedding vector respectively.
        weight_attr(ParamAttr|None): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_ParamAttr` . In addition,
            user-defined or pre-trained word vectors can be loaded with the :attr:`param_attr` parameter.
            The local word vector needs to be transformed into numpy format, and the shape of local word
            vector should be consistent with :attr:`num_embeddings` . Then :ref:`api_initializer_NumpyArrayInitializer`
            is used to load custom or pre-trained word vectors. See code example for details.
        mp_group(Group): The tensor parallel group.
        name(str, optional): For detailed information, please refer
               to :ref:`api_guide_Name`. Usually name is no need to set and
               None by default.

    Examples:
        .. code-block:: python
        import paddle
        from paddle.distributed import fleet

        class SimpleMPNet(paddle.nn.Layer):
           def __init__(self, vocab_size, hidden_size, inner_size, output_size):
60
              super().__init__()
W
wuhuachaocoding 已提交
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
              self.linear1 = fleet.meta_parallel.ColumnParallelLinear(
                    hidden_size,
                    inner_size,
                    gather_output=False,
                    has_bias=True)

              self.linear2 = fleet.meta_parallel.RowParallelLinear(
                    inner_size,
                    hidden_size,
                    input_is_parallel=True,
                    has_bias=True)

              self.linear3 = paddle.nn.Linear(hidden_size, output_size)

              self.embedding = fleet.meta_parallel.VocabParallelEmbedding(
                                vocab_size,
                                hidden_size)

           def forward(self, x):
              x = self.embedding(x)
              x = self.linear1(x)
              x = self.linear2(x)
              x = self.linear3(x)
              return x
    """

87 88 89 90 91 92 93 94
    def __init__(
        self,
        num_embeddings,
        embedding_dim,
        weight_attr=None,
        mp_group=None,
        name=None,
    ):
95
        super().__init__()
W
wuhuachaocoding 已提交
96

97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
        self.model_parallel_group = (
            tp._HYBRID_PARALLEL_GROUP.get_model_parallel_group()
            if mp_group is None
            else mp_group
        )
        self.world_size = (
            tp._HYBRID_PARALLEL_GROUP.get_model_parallel_world_size()
            if mp_group is None
            else mp_group.nranks
        )
        self.rank = (
            tp._HYBRID_PARALLEL_GROUP.get_model_parallel_rank()
            if mp_group is None
            else mp_group.rank
        )
W
wuhuachaocoding 已提交
112 113

        self.origin_num_embeddings = num_embeddings
114
        self.is_mp = self.world_size > 1
W
wuhuachaocoding 已提交
115

116 117 118
        assert (
            num_embeddings % self.world_size == 0
        ), "The length of the vocabulary must be divisible by the parallelism degree of MP"
W
wuhuachaocoding 已提交
119 120 121 122 123 124 125 126 127 128 129

        per_part_size = num_embeddings // self.world_size

        self.vocab_start_index = self.rank * per_part_size
        self._dtype = self._helper.get_default_dtype()
        self._size = [per_part_size, embedding_dim]
        self._weight_attr = weight_attr
        self._name = name

        if self.is_mp and paddle.in_dynamic_mode():
            with get_rng_state_tracker().rng_state():
130 131 132 133 134 135
                self.weight = self.create_parameter(
                    attr=self._weight_attr,
                    shape=self._size,
                    dtype=self._dtype,
                    is_bias=False,
                )
W
wuhuachaocoding 已提交
136
        else:
137 138 139 140 141 142
            self.weight = self.create_parameter(
                attr=self._weight_attr,
                shape=self._size,
                dtype=self._dtype,
                is_bias=False,
            )
W
wuhuachaocoding 已提交
143 144

        self.weight.is_distributed = True if self.is_mp else False
145
        if self.weight.is_distributed:
146
            self.weight.split_axis = 0
W
wuhuachaocoding 已提交
147 148 149 150 151 152 153

    def forward(self, x):
        if self.is_mp:
            output_parallel = mp_ops._c_lookup_table(
                self.weight,
                x,
                start_index=self.vocab_start_index,
154 155 156 157 158 159 160 161
                name=self._name,
            )
            output = mp_ops._mp_allreduce(
                output_parallel,
                group=self.model_parallel_group,
                use_calc_stream=True,
                use_model_parallel=True,
            )
W
wuhuachaocoding 已提交
162
        else:
163 164 165 166 167 168 169
            output = F.embedding(
                x,
                weight=self.weight,
                padding_idx=None,
                sparse=False,
                name=self._name,
            )
W
wuhuachaocoding 已提交
170 171 172
        return output


173
class ColumnParallelLinear(paddle.nn.Layer):
W
wuhuachaocoding 已提交
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
    """Linear layer with mp parallelized(column).
    this class is used for splitting Linear Layer in mp group, column split the weight of the Linear layer.

    Args:
        in_features(int): The number of input units.
        out_features(int): The number of output units.
        weight_attr(ParamAttr|None): The attribute for the learnable weight of this layer. The default value is None
            and the weight will be initialized to zero. For detailed information, please refer to paddle.ParamAttr.
        has_bias(bool): whether to add bias.
        gather_output(bool): whether to do allgahter for the output of each rank.
        fuse_matmul_bias(bool): whether to fuse matmul and bias.
        mp_group(Group): The tensor parallel group.
        name(str, optional): Normally there is no need for user to set this parameter.
            For detailed information, please refer to :ref:`api_guide_Name` .

    Examples:
        .. code-block:: python
        import paddle
        from paddle.distributed import fleet

        class SimpleMPNet(paddle.nn.Layer):
           def __init__(self, vocab_size, hidden_size, inner_size, output_size):
196
              super().__init__()
W
wuhuachaocoding 已提交
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
              self.linear1 = fleet.meta_parallel.ColumnParallelLinear(
                    hidden_size,
                    inner_size,
                    gather_output=False,
                    has_bias=True)

              self.linear2 = fleet.meta_parallel.RowParallelLinear(
                    inner_size,
                    hidden_size,
                    input_is_parallel=True,
                    has_bias=True)

              self.linear3 = paddle.nn.Linear(hidden_size, output_size)

              self.embedding = fleet.meta_parallel.VocabParallelEmbedding(
                                vocab_size,
                                hidden_size)

           def forward(self, x):
              x = self.embedding(x)
              x = self.linear1(x)
              x = self.linear2(x)
              x = self.linear3(x)
              return x
    """

223 224 225 226 227 228 229 230 231 232 233
    def __init__(
        self,
        in_features,
        out_features,
        weight_attr=None,
        has_bias=None,
        gather_output=True,
        fuse_matmul_bias=False,
        mp_group=None,
        name=None,
    ):
234
        super().__init__()
W
wuhuachaocoding 已提交
235

236 237 238 239 240 241 242 243 244 245
        self.model_parallel_group = (
            tp._HYBRID_PARALLEL_GROUP.get_model_parallel_group()
            if mp_group is None
            else mp_group
        )
        self.world_size = (
            tp._HYBRID_PARALLEL_GROUP.get_model_parallel_world_size()
            if mp_group is None
            else mp_group.nranks
        )
W
wuhuachaocoding 已提交
246
        self._name = name
247
        self.is_mp = self.world_size > 1
W
wuhuachaocoding 已提交
248 249 250 251 252

        self.gather_output = gather_output
        assert out_features % self.world_size == 0, (
            "Number of column of the weight for linear ({}) must be"
            " divisible by model parallel size ({})".format(
253 254 255
                out_features, self.world_size
            )
        )
W
wuhuachaocoding 已提交
256 257 258 259 260 261 262 263 264 265 266
        self.output_size_per_partition = out_features // self.world_size

        self._weight_attr = weight_attr
        self._dtype = self._helper.get_default_dtype()

        if self.is_mp and paddle.in_dynamic_mode():
            with get_rng_state_tracker().rng_state():
                self.weight = self.create_parameter(
                    shape=[in_features, self.output_size_per_partition],
                    attr=self._weight_attr,
                    dtype=self._dtype,
267 268
                    is_bias=False,
                )
W
wuhuachaocoding 已提交
269 270 271 272 273
        else:
            self.weight = self.create_parameter(
                shape=[in_features, self.output_size_per_partition],
                attr=self._weight_attr,
                dtype=self._dtype,
274 275
                is_bias=False,
            )
W
wuhuachaocoding 已提交
276 277 278

        self.weight.is_distributed = True if self.is_mp else False

279
        if self.weight.is_distributed:
280
            self.weight.split_axis = 1
281

W
wuhuachaocoding 已提交
282 283 284 285 286 287
        if has_bias:
            # initialize bias to zero like Megatron
            self.bias = self.create_parameter(
                shape=[self.output_size_per_partition],
                attr=paddle.nn.initializer.Constant(value=0.0),
                dtype=self._dtype,
288 289
                is_bias=True,
            )
W
wuhuachaocoding 已提交
290
            self.bias.is_distributed = True if self.is_mp else False
291
            if self.bias.is_distributed:
292
                self.bias.split_axis = 0
W
wuhuachaocoding 已提交
293 294 295 296 297 298 299 300 301 302 303
        else:
            self.bias = None

        self.linear = F.linear

        if fuse_matmul_bias:
            if not is_fused_matmul_bias_supported():
                raise NotImplementedError(
                    "You set fuse_matmul_bias=True in ColumnParallelLinear, "
                    "however, the paddle you are using not support this operation. "
                    "Please set fuse_matmul_bias=False or use paddle compiled "
304 305
                    "with cuda 11.6 or higher."
                )
W
wuhuachaocoding 已提交
306
            from paddle.incubate.nn.functional import fused_linear
307

W
wuhuachaocoding 已提交
308 309 310 311 312
            self.linear = fused_linear

    def forward(self, x):
        # use inner api to process identity
        if self.is_mp:
313 314 315
            input_parallel = mp_ops._c_identity(
                x, group=self.model_parallel_group
            )
W
wuhuachaocoding 已提交
316 317 318
        else:
            input_parallel = x

319 320 321
        output_parallel = self.linear(
            input_parallel, self.weight, self.bias, name=self._name
        )
W
wuhuachaocoding 已提交
322 323

        if self.gather_output and self.is_mp:
324 325 326
            output = mp_ops._c_concat(
                output_parallel, group=self.model_parallel_group
            )
W
wuhuachaocoding 已提交
327 328 329 330 331
        else:
            output = output_parallel
        return output


332 333 334 335 336 337 338 339 340 341 342
class MPScale(PyLayer):
    @staticmethod
    def forward(ctx, x, mp_degree):
        out = paddle.scale(x, 1.0 / mp_degree)
        return out

    @staticmethod
    def backward(ctx, dout):
        return dout


343
class RowParallelLinear(paddle.nn.Layer):
W
wuhuachaocoding 已提交
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
    """Linear layer with mp parallelized(row).
    this class is used for splitting Linear Layer in mp group, row split the weight of the Linear layer.

    Args:
        in_features(int): The number of input units.
        out_features(int): The number of output units.
        weight_attr(ParamAttr|None): The attribute for the learnable weight of this layer. The default value is None
            and the weight will be initialized to zero. For detailed information, please refer to paddle.ParamAttr.
        has_bias(bool): whether to add bias.
        input_is_parallel(bool): whether the input has alreadly been splitted across the mp group.
        fuse_matmul_bias(bool): whether to fuse matmul and bias.
        mp_group(Group): The tensor parallel group.
        name(str, optional): Normally there is no need for user to set this parameter.
            For detailed information, please refer to :ref:`api_guide_Name` .

    Examples:
        .. code-block:: python
        import paddle
        from paddle.distributed import fleet

        class SimpleMPNet(paddle.nn.Layer):
           def __init__(self, vocab_size, hidden_size, inner_size, output_size):
366
              super().__init__()
W
wuhuachaocoding 已提交
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
              self.linear1 = fleet.meta_parallel.ColumnParallelLinear(
                    hidden_size,
                    inner_size,
                    gather_output=False,
                    has_bias=True)

              self.linear2 = fleet.meta_parallel.RowParallelLinear(
                    inner_size,
                    hidden_size,
                    input_is_parallel=True,
                    has_bias=True)

              self.linear3 = paddle.nn.Linear(hidden_size, output_size)

              self.embedding = fleet.meta_parallel.VocabParallelEmbedding(
                                vocab_size,
                                hidden_size)

           def forward(self, x):
              x = self.embedding(x)
              x = self.linear1(x)
              x = self.linear2(x)
              x = self.linear3(x)
              return x
    """

393 394 395 396 397 398 399 400 401 402 403
    def __init__(
        self,
        in_features,
        out_features,
        weight_attr=None,
        has_bias=True,
        input_is_parallel=False,
        fuse_matmul_bias=False,
        mp_group=None,
        name=None,
    ):
404
        super().__init__()
W
wuhuachaocoding 已提交
405 406 407 408 409 410 411 412

        self.in_features = in_features
        self.out_features = out_features
        self.input_is_parallel = input_is_parallel
        self._weight_attr = weight_attr
        self._dtype = self._helper.get_default_dtype()
        self._name = name

413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
        self.model_parallel_group = (
            tp._HYBRID_PARALLEL_GROUP.get_model_parallel_group()
            if mp_group is None
            else mp_group
        )
        self.world_size = (
            tp._HYBRID_PARALLEL_GROUP.get_model_parallel_world_size()
            if mp_group is None
            else mp_group.nranks
        )
        self.rank = (
            tp._HYBRID_PARALLEL_GROUP.get_model_parallel_rank()
            if mp_group is None
            else mp_group.rank
        )
W
wuhuachaocoding 已提交
428

429
        self.is_mp = self.world_size > 1
W
wuhuachaocoding 已提交
430 431 432
        assert in_features % self.world_size == 0, (
            "Number of row of the weight for linear ({}) must be"
            " divisible by model parallel size ({})".format(
433 434 435
                in_features, self.world_size
            )
        )
W
wuhuachaocoding 已提交
436 437 438 439 440 441 442 443 444

        self.input_size_per_partition = in_features // self.world_size

        if self.is_mp and paddle.in_dynamic_mode():
            with get_rng_state_tracker().rng_state():
                self.weight = self.create_parameter(
                    shape=[self.input_size_per_partition, self.out_features],
                    attr=self._weight_attr,
                    dtype=self._dtype,
445 446
                    is_bias=False,
                )
W
wuhuachaocoding 已提交
447 448 449 450 451
        else:
            self.weight = self.create_parameter(
                shape=[self.input_size_per_partition, self.out_features],
                attr=self._weight_attr,
                dtype=self._dtype,
452 453
                is_bias=False,
            )
W
wuhuachaocoding 已提交
454 455

        self.weight.is_distributed = True if self.is_mp else False
456
        if self.weight.is_distributed:
457
            self.weight.split_axis = 0
W
wuhuachaocoding 已提交
458 459 460 461 462 463

        if has_bias:
            self.bias = self.create_parameter(
                shape=[self.out_features],
                attr=paddle.nn.initializer.Constant(value=0.0),
                dtype=self._dtype,
464 465
                is_bias=True,
            )
W
wuhuachaocoding 已提交
466 467 468 469 470 471 472 473 474 475 476
        else:
            self.bias = None

        self.linear = F.linear

        if fuse_matmul_bias:
            if not is_fused_matmul_bias_supported():
                raise NotImplementedError(
                    "You set fuse_matmul_bias=True in RowParallelLinear, "
                    "however, the paddle you are using not support this operation. "
                    "Please set fuse_matmul_bias=False or use paddle compiled "
477 478
                    "with cuda 11.6 or higher."
                )
W
wuhuachaocoding 已提交
479
            from paddle.incubate.nn.functional import fused_linear
480

W
wuhuachaocoding 已提交
481
            self.linear = fused_linear
482
        self.fuse_matmul_bias = fuse_matmul_bias
W
wuhuachaocoding 已提交
483 484 485 486 487 488 489 490 491

    def forward(self, x):
        if self.input_is_parallel or (not self.is_mp):
            input_parallel = x
        else:
            # split last dim
            input_parallel = mp_ops._c_split(x, group=self.model_parallel_group)

        if self.is_mp:
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
            if self.fuse_matmul_bias:
                bias = MPScale.apply(self.bias, self.world_size)
                output_parallel = self.linear(
                    input_parallel, self.weight, bias, name=self._name
                )
                output = mp_ops._mp_allreduce(
                    output_parallel,
                    group=self.model_parallel_group,
                    use_calc_stream=True,
                    use_model_parallel=True,
                )
            else:
                output_parallel = self.linear(
                    input_parallel, self.weight, name=self._name
                )
                output_ = mp_ops._mp_allreduce(
                    output_parallel,
                    group=self.model_parallel_group,
                    use_calc_stream=True,
                    use_model_parallel=True,
                )
                output = (
                    output_ + self.bias if self.bias is not None else output_
                )
W
wuhuachaocoding 已提交
516
        else:
517 518 519
            output = self.linear(
                input_parallel, self.weight, self.bias, name=self._name
            )
W
wuhuachaocoding 已提交
520 521 522 523

        return output


524
class ParallelCrossEntropy(paddle.nn.Layer):
W
wuhuachaocoding 已提交
525 526 527 528 529 530 531
    """CrossEntropy with mp parallelized.
    this class is used for splitting softmax cross entropy in mp group.

    Args:
        mp_group(Group): The tensor parallel group.
        name(str, optional): Normally there is no need for user to set this parameter.
            For detailed information, please refer to :ref:`api_guide_Name` .
532
        ignore_index (long int, optional):  Specifies a target value that is ignored and
533 534
            does not contribute to the loss. A negative value means that no label value
            needs to be ignored. Default is -100 .
W
wuhuachaocoding 已提交
535 536 537 538 539 540 541

    Examples:
        .. code-block:: python
        loss_func = ParallelCrossEntropy()
        loss = loss_func(img, lable)
    """

542
    def __init__(self, mp_group=None, name=None, ignore_index=-100):
543
        super().__init__()
W
wuhuachaocoding 已提交
544
        self.name = name
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
        self.model_parallel_group = (
            tp._HYBRID_PARALLEL_GROUP.get_model_parallel_group()
            if mp_group is None
            else mp_group
        )
        self.world_size = (
            tp._HYBRID_PARALLEL_GROUP.get_model_parallel_world_size()
            if mp_group is None
            else mp_group.nranks
        )
        self.rank = (
            tp._HYBRID_PARALLEL_GROUP.get_model_parallel_rank()
            if mp_group is None
            else mp_group.rank
        )
560
        self.ignore_index = ignore_index
W
wuhuachaocoding 已提交
561 562 563

    def forward(self, input, label):
        loss = mp_ops._c_softmax_with_cross_entropy(
564 565 566 567
            input,
            label,
            group=self.model_parallel_group,
            ignore_index=self.ignore_index,
568
        )
W
wuhuachaocoding 已提交
569
        return loss