memory_optimization_transpiler.py 9.7 KB
Newer Older
D
dzhwinter 已提交
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16 17 18 19
from collections import defaultdict
import framework
from framework import Program, default_main_program, Parameter, Variable
import backward
from backward import _rename_arg_
20 21 22 23 24 25 26 27 28 29 30
from . import core

dtype_to_size = {
    core.DataType.FP16: 2,
    core.DataType.FP32: 4,
    core.DataType.FP64: 8,
    core.DataType.INT16: 2,
    core.DataType.INT32: 4,
    core.DataType.INT64: 8,
    core.DataType.BOOL: 1
}
31 32 33


class ControlFlowGraph(object):
34
    def __init__(self, Program, ops, forward_num):
35
        self._program = Program
36 37 38 39
        self._ops = ops
        self._forward_num = forward_num
        self._successors = defaultdict(set)
        self._presuccessors = defaultdict(set)
40 41 42 43 44 45 46 47 48 49
        self._uses = defaultdict(set)
        self._defs = defaultdict(set)
        self._live_in = defaultdict(set)
        self._live_out = defaultdict(set)

    def _add_connections(self, connections):
        for node1, node2 in connections:
            self._add(node1, node2)

    def _add(self, node1, node2):
50 51
        self._successors[node1].add(node2)
        self._presuccessors[node2].add(node1)
52 53

    def _build_graph(self):
54
        self.op_size = len(self._ops)
55 56 57
        op_node_connections = [(i, i + 1) for i in range(self.op_size - 1)]
        self._add_connections(op_node_connections)
        for i in range(self.op_size):
58 59
            self._uses[i].update(self._ops[i].input_arg_names())
            self._defs[i].update(self._ops[i].output_arg_names())
60

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
    def _update_graph(self, old_name, new_name, begin_idx=0):
        for i in range(begin_idx, self.op_size):
            if old_name in self._uses[i]:
                self._uses[i].remove(old_name)
                self._uses[i].add(new_name)
            if old_name in self._defs[i]:
                self._defs[i].remove(old_name)
                self._defs[i].add(new_name)
            if old_name in self._live_in[i]:
                self._live_in[i].remove(old_name)
                self._live_out[i].add(new_name)
            if old_name in self._live_out[i]:
                self._live_out[i].remove(old_name)
                self._live_out[i].add(new_name)

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
    def _reach_fixed_point(self, live_in, live_out):
        if len(live_in) != len(self._live_in):
            return False
        if len(live_out) != len(self._live_out):
            return False
        for i in range(self.op_size):
            if live_in[i] != self._live_in[i]:
                return False
        for i in range(self.op_size):
            if live_out[i] != self._live_out[i]:
                return False
        return True

    def _dataflow_analyze(self):
        self._build_graph()
        live_in = defaultdict(set)
        live_out = defaultdict(set)
        while True:
            for i in range(self.op_size):
                live_in[i] = set(self._live_in[i])
                live_out[i] = set(self._live_out[i])
                self._live_in[i] = self._uses[i] | (
                    self._live_out[i] - self._defs[i])
99
                for s in self._successors[i]:
100 101 102 103 104 105 106 107 108
                    self._live_out[i] |= self._live_in[s]

            if self._reach_fixed_point(live_in, live_out):
                break

    def _get_diff(self, a, b):
        u = a & b
        return a - u, b - u

109 110 111 112 113 114 115 116 117 118 119 120
    def _has_var(self, block_desc, var_name, is_forward):
        if is_forward:
            return block_desc.has_var(str(var_name))
        else:
            return block_desc.has_var_recursive(str(var_name))

    def _find_var(self, block_desc, var_name, is_forward):
        if is_forward:
            return block_desc.find_var(str(var_name))
        else:
            return block_desc.find_var_recursive(str(var_name))

121
    def memory_optimize(self):
122 123 124 125 126 127 128 129 130 131 132 133 134
        def check_var_validity(block_desc, x, is_forward):
            if str(x) == "@EMPTY@":
                return False
            if not self._has_var(block_desc, x, is_forward):
                return False
            if self._find_var(block_desc, x, is_forward).persistable():
                return False
            if self._find_var(
                    block_desc, x,
                    is_forward).type() != core.VarDesc.VarType.LOD_TENSOR:
                return False
            return True

135 136 137 138
        self._build_graph()
        self._dataflow_analyze()
        self.pool = []
        for i in range(self.op_size):
139 140 141 142 143
            op = self._ops[i]
            if op.type() == "while" or op.type() == "while_grad":
                continue
            block_desc = op.block()
            is_forward = i < self._forward_num
144
            if self.pool:
145 146 147 148 149 150 151
                defs_can_optimize = filter(
                    lambda x: check_var_validity(block_desc, x, is_forward),
                    self._defs[i])
                out_pair = [
                    (x, self._find_var(block_desc, x, is_forward).shape())
                    for x in defs_can_optimize
                ]
152
                for x, x_shape in out_pair:
153 154 155 156 157 158 159 160 161
                    for index, cache_pair in enumerate(self.pool):
                        cache_var = cache_pair[0]
                        cache_shape = cache_pair[1]
                        if x_shape == cache_shape:
                            if self._has_var(block_desc, cache_var, is_forward):
                                x_dtype = self._find_var(block_desc, x,
                                                         is_forward).dtype()
                                cache_dtype = self._find_var(
                                    block_desc, cache_var, is_forward).dtype()
162 163 164
                                # TODO(qijun): actually, we should compare dtype_to_size[x_dtype]
                                # and dtype_to_size[cache_dtype]
                                if x_dtype == cache_dtype:
165 166 167 168 169 170
                                    print(("Hit Cache !!!! cache pool index "
                                           "is %d, var name is %s, "
                                           "cached var name is %s, "
                                           "var shape is %s ") %
                                          (index, x, cache_var,
                                           str(cache_shape)))
171
                                    self.pool.pop(index)
172 173
                                    if x == cache_var:
                                        break
174
                                    _rename_arg_(
175 176 177 178
                                        self._ops, x, cache_var, begin_idx=i)
                                    self._program.block(block_desc.id).var(
                                        str(x)).desc = self._find_var(
                                            block_desc, cache_var, is_forward)
179 180 181
                                    self._update_graph(
                                        x, cache_var, begin_idx=i)
                                    break
182 183 184 185

            in_diff, out_diff = self._get_diff(self._live_in[i],
                                               self._live_out[i])
            can_optimize = filter(
186
                lambda x: check_var_validity(block_desc, x, is_forward),
187 188 189
                in_diff)
            if can_optimize:
                for var_name in can_optimize:
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
                    self.pool.append((var_name, self._find_var(
                        block_desc, var_name, is_forward).shape()))


def get_cfgs(input_program):
    ops_list = []
    pdesc = input_program.get_desc()
    block_desc = pdesc.block(0)
    op_size = block_desc.op_size()
    # Get global block ops
    ops_list.append(([block_desc.op(i) for i in range(op_size)], op_size))

    while_sub_block_ids = []
    while_grad_sub_block_ids = []
    while_pair = []

    for i in range(op_size):
        op = block_desc.op(i)
        if op.type() == "while":
            while_sub_block_ids.append(op.attr("sub_block").id)
        elif op.type() == "while_grad":
            while_grad_sub_block_ids.append(op.attr("sub_block").id)

    # Find while/while_grad block pair
    for grad_id in while_grad_sub_block_ids:
        parent_id = pdesc.block(grad_id).parent
        if parent_id in while_sub_block_ids:
            while_pair.append((parent_id, grad_id))
            while_sub_block_ids.remove(parent_id)

    # Get while/while_grad block ops
    for parent_id, grad_id in while_pair:
        while_block_ops = []
        while_block = pdesc.block(parent_id)
        while_block_op_size = while_block.op_size()
        for i in range(while_block_op_size):
            while_block_ops.append(while_block.op(i))

        while_grad_block = pdesc.block(grad_id)
        while_grad_block_op_size = while_grad_block.op_size()
        for i in range(while_grad_block_op_size):
            while_block_ops.append(while_grad_block.op(i))

        ops_list.append((while_block_ops, while_block_op_size))

    # Process rest while block ops
    for parent_id in while_sub_block_ids:
        while_block_ops = []
        while_block = pdesc.block(parent_id)
        while_block_op_size = while_block.op_size()
        for i in range(while_block_op_size):
            while_block_ops.append(while_block.op(i))

        ops_list.append((while_block_ops, while_block_op_size))

    cfgs = [ControlFlowGraph(input_program, i, j) for i, j in ops_list]
    return cfgs
247 248 249


def memory_optimize(input_program):
250 251 252
    cfgs = get_cfgs(input_program)
    for cfg in cfgs:
        cfg.memory_optimize()