bipartite_match_op.cc 7.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/framework/op_registry.h"
#include "paddle/operators/math/math_function.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;

class BipartiteMatchOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
D
dangqingqing 已提交
29 30
    PADDLE_ENFORCE(ctx->HasInput("DistMat"),
                   "Input(DistMat) of BipartiteMatch should not be null.");
31

D
dangqingqing 已提交
32 33
    auto dims = ctx->GetInputDim("DistMat");
    PADDLE_ENFORCE_EQ(dims.size(), 2, "The rank of Input(DistMat) must be 2.");
34 35 36 37 38 39 40 41 42 43

    ctx->SetOutputDim("ColToRowMatchIndices", dims);
    ctx->SetOutputDim("ColToRowMatchDis", dims);
  }
};

template <typename T>
class BipartiteMatchKernel : public framework::OpKernel<T> {
 public:
  // The match_indices must be initialized to -1 at first.
44 45 46
  // The match_dist must be initialized to 0 at first.
  void BipartiteMatch(const Tensor& dist, int* match_indices,
                      T* match_dist) const {
47
    constexpr T kEPS = static_cast<T>(1e-6);
48 49 50 51
    PADDLE_ENFORCE_EQ(dist.dims().size(), 2, "The rank of dist must be 2.");
    int64_t row = dist.dims()[0];
    int64_t col = dist.dims()[1];
    auto* dist_data = dist.data<T>();
52 53 54 55 56 57 58
    std::vector<int> row_pool;
    for (int i = 0; i < row; ++i) {
      row_pool.push_back(i);
    }
    while (row_pool.size() > 0) {
      int max_idx = -1;
      int max_row_idx = -1;
59
      T max_dist = -1;
60 61 62 63
      for (int64_t j = 0; j < col; ++j) {
        if (match_indices[j] != -1) {
          continue;
        }
D
dangqingqing 已提交
64
        for (size_t k = 0; k < row_pool.size(); ++k) {
65 66
          int m = row_pool[k];
          // distance is 0 between m-th row and j-th column
67
          if (dist_data[m * col + j] < kEPS) {
68 69
            continue;
          }
70
          if (dist_data[m * col + j] > max_dist) {
71 72
            max_idx = j;
            max_row_idx = m;
73
            max_dist = dist_data[m * col + j];
74 75 76 77 78 79 80 81 82
          }
        }
      }
      if (max_idx == -1) {
        // Cannot find good match.
        break;
      } else {
        PADDLE_ENFORCE_EQ(match_indices[max_idx], -1);
        match_indices[max_idx] = max_row_idx;
83
        match_dist[max_idx] = max_dist;
84 85 86 87 88 89 90 91
        // Erase the row index.
        row_pool.erase(
            std::find(row_pool.begin(), row_pool.end(), max_row_idx));
      }
    }
  }

  void Compute(const framework::ExecutionContext& context) const override {
D
dangqingqing 已提交
92
    auto* dist_mat = context.Input<LoDTensor>("DistMat");
93
    auto* match_indices = context.Output<Tensor>("ColToRowMatchIndices");
94
    auto* match_dist = context.Output<Tensor>("ColToRowMatchDis");
95 96 97

    auto& dev_ctx = context.device_context<platform::CPUDeviceContext>();

98
    auto col = dist_mat->dims()[1];
99

100
    int64_t n = dist_mat->lod().size() == 0UL
101
                    ? 1
102 103 104 105 106
                    : static_cast<int64_t>(dist_mat->lod().back().size() - 1);
    if (dist_mat->lod().size()) {
      PADDLE_ENFORCE_EQ(dist_mat->lod().size(), 1UL,
                        "Only support 1 level of LoD.");
    }
107
    match_indices->mutable_data<int>({n, col}, context.GetPlace());
108
    match_dist->mutable_data<T>({n, col}, context.GetPlace());
109 110 111 112

    math::SetConstant<platform::CPUDeviceContext, int> iset;
    iset(dev_ctx, match_indices, static_cast<int>(-1));
    math::SetConstant<platform::CPUDeviceContext, T> tset;
113
    tset(dev_ctx, match_dist, static_cast<T>(0));
114 115

    int* indices = match_indices->data<int>();
116
    T* dist = match_dist->data<T>();
117
    if (n == 1) {
118
      BipartiteMatch(*dist_mat, indices, dist);
119
    } else {
120
      auto lod = dist_mat->lod().back();
121
      for (size_t i = 0; i < lod.size() - 1; ++i) {
122 123
        Tensor one_ins = dist_mat->Slice(lod[i], lod[i + 1]);
        BipartiteMatch(one_ins, indices + i * col, dist + i * col);
124 125 126 127 128 129 130 131 132 133
      }
    }
  }
};

class BipartiteMatchOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  BipartiteMatchOpMaker(OpProto* proto, OpAttrChecker* op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput(
D
dangqingqing 已提交
134
        "DistMat",
135 136 137 138
        "(LoDTensor or Tensor) this input is a 2-D LoDTensor with shape "
        "[K, M]. It is pair-wise distance matrix between the entities "
        "represented by each row and each column. For example, assumed one "
        "entity is A with shape [K], another entity is B with shape [M]. The "
D
dangqingqing 已提交
139
        "DistMat[i][j] is the distance between A[i] and B[j]. The bigger "
140
        "the distance is, the better macthing the pairs are. Please note, "
141 142 143 144 145 146 147 148
        "This tensor can contain LoD information to represent a batch of "
        "inputs. One instance of this batch can contain different numbers of "
        "entities.");
    AddOutput("ColToRowMatchIndices",
              "(Tensor) A 2-D Tensor with shape [N, M] in int type. "
              "N is the batch size. If ColToRowMatchIndices[i][j] is -1, it "
              "means B[j] does not match any entity in i-th instance. "
              "Otherwise, it means B[j] is matched to row "
149 150
              "ColToRowMatchIndices[i][j] in i-th instance. The row number of "
              "i-th instance is saved in ColToRowMatchIndices[i][j].");
151 152 153 154
    AddOutput("ColToRowMatchDis",
              "(Tensor) A 2-D Tensor with shape [N, M] in float type. "
              "N is batch size. If ColToRowMatchIndices[i][j] is -1, "
              "ColToRowMatchDis[i][j] is also -1.0. Otherwise, assumed "
155
              "ColToRowMatchIndices[i][j] = d, and the row offsets of each "
156
              "instance are called LoD. Then "
D
dangqingqing 已提交
157
              "ColToRowMatchDis[i][j] = DistMat[d+LoD[i]][j]");
158 159
    AddComment(R"DOC(
This operator is a greedy bipartite matching algorithm, which is used to
160 161 162 163 164 165 166 167
obtain the matching with the maximum distance based on the input
distance matrix. For input 2D matrix, the bipartite matching algorithm can
find the matched column for each row, also can find the matched row for
each column. And this operator only calculate matched indices from column
to row. For each instance, the number of matched indices is the number of
of columns of the input ditance matrix.

There are two outputs to save matched indices and distance.
168 169 170 171 172
A simple description, this algothrim matched the best (maximum distance)
row entity to the column entity and the matched indices are not duplicated
in each row of ColToRowMatchIndices. If the column entity is not matched
any row entity, set -1 in ColToRowMatchIndices.

D
dangqingqing 已提交
173
Please note that the input DistMat can be LoDTensor (with LoD) or Tensor.
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
If LoDTensor with LoD, the height of ColToRowMatchIndices is batch size.
If Tensor, the height of ColToRowMatchIndices is 1.

)DOC");
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(bipartite_match, ops::BipartiteMatchOp,
                  ops::BipartiteMatchOpMaker,
                  paddle::framework::EmptyGradOpMaker);
REGISTER_OP_CPU_KERNEL(bipartite_match, ops::BipartiteMatchKernel<float>,
                       ops::BipartiteMatchKernel<double>);