flatten_op.h 6.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
18
#include "paddle/fluid/framework/pten_utils.h"
19 20
#include "paddle/fluid/operators/math/pooling.h"
#include "paddle/fluid/platform/device_context.h"
21 22
#include "paddle/pten/kernels/empty_kernel.h"
#include "paddle/pten/kernels/flatten_grad_kernel.h"
23
#include "paddle/pten/kernels/flatten_kernel.h"
24
#include "paddle/pten/kernels/funcs/blas/blas.h"
25
#include "paddle/pten/kernels/funcs/math_function.h"
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

namespace paddle {
namespace operators {

template <typename DeviceContext, typename T>
class FlattenKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &context) const override {
    auto *in = context.Input<framework::LoDTensor>("X");
    auto *out = context.Output<framework::LoDTensor>("Out");

    auto &axes = context.Attr<int>("axis");
    auto x_dims = in->dims();
    auto out_dims = framework::make_ddim(GetOutputShape(axes, x_dims));

    out->mutable_data(context.GetPlace(), in->type());
    framework::TensorCopy(
        *in, context.GetPlace(),
        context.template device_context<platform::DeviceContext>(), out);
    out->Resize(out_dims);
  }

  static std::vector<int32_t> GetOutputShape(const int axis,
                                             const framework::DDim &in_dims) {
    int64_t outer = 1, inner = 1;
    for (int i = 0; i < in_dims.size(); ++i) {
      if (i < axis) {
        outer *= in_dims[i];
      } else {
        inner *= in_dims[i];
      }
    }
    std::vector<int32_t> out_shape(2);
    out_shape[0] = outer;
    out_shape[1] = inner;
    return out_shape;
  }
};

template <typename DeviceContext, typename T>
class FlattenGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    auto *d_x = ctx.Output<framework::LoDTensor>(framework::GradVarName("X"));
    auto *d_out =
        ctx.Input<framework::LoDTensor>(framework::GradVarName("Out"));
    auto in_dims = ctx.Input<framework::LoDTensor>("X")->dims();

    d_x->mutable_data(ctx.GetPlace(), d_out->type());
S
ShenLiang 已提交
75 76 77
    framework::TensorCopy(
        *d_out, ctx.GetPlace(),
        ctx.template device_context<platform::DeviceContext>(), d_x);
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
    d_x->Resize(in_dims);
  }
};

template <typename DeviceContext, typename T>
class Flatten2Kernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &context) const override {
    auto &axes = context.Attr<int>("axis");

    auto *in = context.Input<framework::LoDTensor>("X");
    auto x_dims = in->dims();

    auto *out = context.Output<framework::LoDTensor>("Out");

    auto out_dims = framework::make_ddim(
        FlattenKernel<DeviceContext, T>::GetOutputShape(axes, x_dims));

    out->mutable_data(context.GetPlace(), in->type());
    framework::TensorCopy(
        *in, context.GetPlace(),
        context.template device_context<platform::DeviceContext>(), out);
    out->Resize(out_dims);
  }
};

template <typename DeviceContext, typename T>
class Flatten2GradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    auto *d_x = ctx.Output<framework::LoDTensor>(framework::GradVarName("X"));
    auto *d_out =
        ctx.Input<framework::LoDTensor>(framework::GradVarName("Out"));

    auto xshape_dims = ctx.Input<framework::LoDTensor>("XShape")->dims();
    auto x_dims = framework::slice_ddim(xshape_dims, 1, xshape_dims.size());

    d_x->mutable_data(ctx.GetPlace(), d_out->type());
S
ShenLiang 已提交
116 117 118
    framework::TensorCopy(
        *d_out, ctx.GetPlace(),
        ctx.template device_context<platform::DeviceContext>(), d_x);
119 120 121 122
    d_x->Resize(x_dims);
  }
};

123 124 125 126 127 128 129
template <typename DeviceContext, typename T>
class FlattenContiguousRangeKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &context) const override {
    auto *in = context.Input<framework::LoDTensor>("X");
    auto *out = context.Output<framework::LoDTensor>("Out");
    out->mutable_data(context.GetPlace(), in->type());
130 131 132 133 134
    auto &start_axis = context.Attr<int>("start_axis");
    auto &stop_axis = context.Attr<int>("stop_axis");
    auto &dev_ctx = context.device_context<DeviceContext>();

    // call new kernel
W
Wilber 已提交
135 136 137 138 139
    pten::FlattenKernel<T, typename paddle::framework::ConvertToPtenContext<
                               DeviceContext>::TYPE>(
        static_cast<const typename paddle::framework::ConvertToPtenContext<
            DeviceContext>::TYPE &>(dev_ctx),
        *in, start_axis, stop_axis, out);
140 141 142 143 144 145 146 147 148 149
  }
};

template <typename DeviceContext, typename T>
class FlattenContiguousRangeGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    auto *d_x = ctx.Output<framework::LoDTensor>(framework::GradVarName("X"));
    auto *d_out =
        ctx.Input<framework::LoDTensor>(framework::GradVarName("Out"));
150
    auto *xshape = ctx.Input<framework::LoDTensor>("XShape");
151 152

    d_x->mutable_data(ctx.GetPlace(), d_out->type());
153 154 155
    auto &dev_ctx = ctx.device_context<DeviceContext>();

    // call new kernel
W
Wilber 已提交
156 157 158 159 160
    pten::FlattenGradKernel<T, typename paddle::framework::ConvertToPtenContext<
                                   DeviceContext>::TYPE>(
        static_cast<const typename paddle::framework::ConvertToPtenContext<
            DeviceContext>::TYPE &>(dev_ctx),
        *d_out, *xshape, d_x);
161 162 163
  }
};

164 165
}  // namespace operators
}  // namespace paddle