bmm_op.h 4.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 *     Unless required by applicable law or agreed to in writing, software
 *     distributed under the License is distributed on an "AS IS" BASIS,
 *     WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *     See the License for the specific language governing permissions and
 *     limitations under the License. */

#ifndef PADDLE_FLUID_OPERATORS_BMM_OP_H_
#define PADDLE_FLUID_OPERATORS_BMM_OP_H_

#include <algorithm>
#include <utility>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
23
#include "paddle/pten/kernels/funcs/blas/blas.h"
24
#include "paddle/pten/kernels/funcs/math_function.h"
25 26 27 28 29 30
namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

static void ReshapeTensorIntoMatrixSequence(
31
    framework::Tensor *x, const pten::funcs::MatDescriptor &descriptor) {
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
  int64_t h, w;
  h = descriptor.height_;
  w = descriptor.width_;
  if (descriptor.trans_) {
    std::swap(w, h);
  }

  x->Resize({descriptor.batch_size_, h, w});
}

static void ReshapeXYOutIntoMatrixSequence(framework::Tensor *x,
                                           framework::Tensor *y,
                                           framework::Tensor *out, bool trans_x,
                                           bool trans_y) {
  auto x_dim = x->dims();
  auto y_dim = y->dims();
48 49
  auto mat_dim_x = pten::funcs::CreateMatrixDescriptor(x_dim, 0, false);
  auto mat_dim_y = pten::funcs::CreateMatrixDescriptor(y_dim, 0, false);
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66

  out->Resize({std::max(mat_dim_x.batch_size_, mat_dim_y.batch_size_),
               mat_dim_x.height_, mat_dim_y.width_});

  ReshapeTensorIntoMatrixSequence(x, mat_dim_x);
  ReshapeTensorIntoMatrixSequence(y, mat_dim_y);
}

template <typename DeviceContext, typename T>
class BmmKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &context) const override {
    const Tensor &x = *context.Input<Tensor>("X");
    const Tensor &y = *context.Input<Tensor>("Y");
    Tensor *out = context.Output<Tensor>("Out");
    out->mutable_data<T>(context.GetPlace());

D
duanboqiang 已提交
67 68 69 70
    if (x.numel() == 0 || y.numel() == 0) {
      return;
    }

71
    auto blas = pten::funcs::GetBlas<DeviceContext, T>(context);
72

73 74
    auto mat_dim_a = pten::funcs::CreateMatrixDescriptor(x.dims(), 0, false);
    auto mat_dim_b = pten::funcs::CreateMatrixDescriptor(y.dims(), 0, false);
75 76 77 78 79 80 81 82 83 84 85 86 87 88

    // auto scale = static_cast<T>(context.Attr<float>("alpha"));
    blas.MatMul(x, mat_dim_a, y, mat_dim_b, T(1), out, T(0));
  }
};

template <typename DeviceContext, typename T>
class BmmGradKernel : public framework::OpKernel<T> {
 public:
  void MatMul(const framework::ExecutionContext &context,
              const framework::Tensor &a, bool trans_a,
              const framework::Tensor &b, bool trans_b,
              framework::Tensor *out) const {
    out->mutable_data<T>(context.GetPlace());
89 90 91
    auto blas = pten::funcs::GetBlas<DeviceContext, T>(context);
    auto mat_dim_a = pten::funcs::CreateMatrixDescriptor(a.dims(), 0, trans_a);
    auto mat_dim_b = pten::funcs::CreateMatrixDescriptor(b.dims(), 0, trans_b);
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145

    blas.MatMul(a, mat_dim_a, b, mat_dim_b, T(1), out, T(0));
  }
  void CalcInputGrad(const framework::ExecutionContext &context,
                     const framework::Tensor &a, bool trans_a,
                     const framework::Tensor &b, bool trans_b,
                     framework::Tensor *out) const {
    if (out == nullptr) return;
    MatMul(context, a, trans_a, b, trans_b, out);
  }
  void Compute(const framework::ExecutionContext &context) const override {
    auto x = *context.Input<framework::Tensor>("X");
    auto y = *context.Input<framework::Tensor>("Y");
    auto dout =
        *context.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto *dx = context.Output<framework::Tensor>(framework::GradVarName("X"));
    auto *dy = context.Output<framework::Tensor>(framework::GradVarName("Y"));

    ReshapeXYOutIntoMatrixSequence(&x, &y, &dout, false, false);
    framework::DDim dx_dims;
    if (dx) {
      dx_dims = dx->dims();
      if (dx_dims != x.dims()) {
        dx->Resize(x.dims());
      }
    }

    framework::DDim dy_dims;
    if (dy) {
      dy_dims = dy->dims();
      if (dy_dims != y.dims()) {
        dy->Resize(y.dims());
      }
    }

    CalcInputGrad(context, dout, false, y, true, dx);
    CalcInputGrad(context, x, true, dout, false, dy);

    if (dx) {
      if (dx_dims != x.dims()) {
        dx->Resize(dx_dims);
      }
    }
    if (dy) {
      if (dy_dims != y.dims()) {
        dy->Resize(dy_dims);
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle
#endif  // PADDLE_FLUID_OPERATORS_BMM_OP_H_