infer_context.cc 5.1 KB
Newer Older
W
Wilber 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/inference/api/infer_context.h"
16 17 18 19 20
#include "paddle/phi/core/dense_tensor.h"
#ifdef PADDLE_WITH_XPU
#include "xpu/runtime.h"
#endif
#include "glog/logging.h"
W
Wilber 已提交
21

W
Wilber 已提交
22 23 24 25 26 27 28
namespace paddle {

#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
InferGPUContext::InferGPUContext(const phi::Place& place)
    : phi::GPUContext(place, false) {}
#endif

29
#ifdef PADDLE_WITH_XPU
C
csy0225 已提交
30 31
InferXPUContext::InferXPUContext(const phi::Place& place)
    : phi::XPUContext(place) {}
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151

void* InferXPUContext::Alloc(phi::TensorBase* tensor,
                             phi::DataType dtype,
                             size_t requested_size,
                             bool pinned,
                             bool fake_alloc) const {
  size_t size = tensor->numel() * phi::SizeOf(tensor->dtype());
  if (l3_autotune_size_ > 0 && holder_map_.empty()) {
    void* data_ptr =
        DeviceContext::Alloc(tensor, dtype, requested_size, pinned, fake_alloc);
    phi::XPUL3CacheBlock* l3_block = nullptr;
    phi::Allocation* holder =
        reinterpret_cast<phi::DenseTensor*>(tensor)->Holder().get();
    if (holder_l3_blocks_.count(holder) == 0) {
      l3_block = new phi::XPUL3CacheBlock();
      holder_l3_blocks_[holder] = l3_block;
      l3_blocks_.push_back(l3_block);
    } else {
      l3_block = holder_l3_blocks_[holder];
    }
    l3_block->Record(size);
    return data_ptr;
  } else if (l3_autotune_size_ > 0 && !holder_map_.empty()) {
    phi::Allocation* holder =
        reinterpret_cast<phi::DenseTensor*>(tensor)->Holder().get();
    auto holder_iter = holder_map_.find(holder);
    if (holder_iter != holder_map_.end()) {
      auto& holder_pair = holder_iter->second;
      auto* swap_holder = holder_pair.first;
      bool& swap_holder_is_l3 = holder_pair.second;
      if (swap_holder_is_l3 && swap_holder->size() >= size) {
        swap(*holder, *swap_holder);
        swap_holder_is_l3 = false;
      } else if (!swap_holder_is_l3 && holder->size() < size) {
        swap(*holder, *swap_holder);
        swap_holder_is_l3 = true;
      }
    }
    return DeviceContext::Alloc(
        tensor, dtype, requested_size, pinned, fake_alloc);
  } else {
    return DeviceContext::Alloc(
        tensor, dtype, requested_size, pinned, fake_alloc);
  }
}

void InferXPUContext::SetL3Info(size_t l3_size,
                                void* l3_ptr,
                                size_t l3_autotune_size) {
  if (l3_ptr == nullptr) {
    if (l3_size_ != l3_size) {
      if (l3_owned_) {
        xpu_free(l3_ptr_);
      }
      if (l3_size > 0) {
        xpu_malloc(&l3_ptr_, l3_size, XPU_MEM_L3);
        if (l3_ptr_ != nullptr) {
          VLOG(3) << "remalloc l3(" << l3_size << ") success.";
          l3_size_ = l3_size;
          l3_owned_ = true;
          l3_autotune_size_ = l3_autotune_size;
        } else {
          VLOG(3) << "malloc l3(" << l3_size << ") failed. No l3 will be used.";
          l3_size_ = 0;
          l3_owned_ = false;
          l3_autotune_size_ = 0;
        }
      }
    }
  } else {
    if (l3_owned_) {
      xpu_free(l3_ptr_);
    }
    l3_ptr_ = l3_ptr;
    l3_size_ = l3_size;
    l3_autotune_size_ = l3_autotune_size;
  }
  if (l3_autotune_size_ == 0) {
    x_context()->_l3_mgr.set(l3_ptr_, l3_size_);
  }
}

void InferXPUContext::L3CacheAutotune() {
  if (l3_autotune_size_ == 0) return;
  if (holder_map_.empty()) {
    l3_plan_.RunAutotune(l3_blocks_, l3_size_);
    auto* plan = l3_plan_.plan();
    int8_t* cur_l3_ptr = reinterpret_cast<int8_t*>(l3_ptr_);
    for (size_t i = 0; i < l3_blocks_.size(); i++) {
      size_t block_size = plan->at(i);
      if (block_size > 0) {
        l3_blocks_[i]->Set(cur_l3_ptr, block_size);
        cur_l3_ptr += block_size;
      }
    }
    x_context()->_l3_mgr.set(
        reinterpret_cast<int8_t*>(l3_ptr_) + l3_size_ - plan->back(),
        plan->back());

    for (auto holder_l3_block : holder_l3_blocks_) {
      auto* l3_block = holder_l3_block.second;
      if (l3_block->size() > 0) {
        auto* holder = holder_l3_block.first;
        auto place = holder->place();
        phi::Allocation* l3_holder =
            new phi::Allocation(l3_block->data(), l3_block->size(), place);
        holder_map_[holder] = std::make_pair(l3_holder, true);
      }
    }
  } else {
    for (auto& holders : holder_map_) {
      auto* holder = holders.first;
      auto& holder_pair = holders.second;
      if (!holder_pair.second) {
        swap(*holder, *(holder_pair.first));
        holder_pair.second = true;
      }
    }
  }
}
C
csy0225 已提交
152 153
#endif

W
Wilber 已提交
154
}  // namespace paddle