test_gelu_op.py 3.2 KB
Newer Older
F
Feiyu Chan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np
from scipy.special import erf
import paddle.fluid as fluid
import paddle.fluid.dygraph as dg
22 23
import paddle
import paddle.nn.functional as F
F
Feiyu Chan 已提交
24 25


26 27 28 29 30 31 32 33 34
def gelu(x, approximate):
    if approximate:
        y_ref = 0.5 * x * (1.0 + np.tanh(
            np.sqrt(2 / np.pi) * (x + 0.044715 * np.power(x, 3))))
    else:
        y_ref = 0.5 * x * (1 + erf(x / np.sqrt(2)))
    return y_ref.astype(x.dtype)


F
Feiyu Chan 已提交
35
class TestGeluOp(unittest.TestCase):
36
    def _test_case1_cpu(self, approximate):
F
Feiyu Chan 已提交
37
        x = np.random.uniform(-1, 1, size=(11, 17)).astype(np.float32)
38
        y_ref = gelu(x, approximate)
F
Feiyu Chan 已提交
39 40 41 42

        place = fluid.CPUPlace()
        with dg.guard(place) as g:
            x_var = dg.to_variable(x)
43
            y_var = fluid.layers.gelu(x_var, approximate)
F
Feiyu Chan 已提交
44 45 46
            y_test = y_var.numpy()
        self.assertTrue(np.allclose(y_ref, y_test, rtol=1e-05, atol=1e-08))

47
    def _test_case1_gpu(self, approximate):
F
Feiyu Chan 已提交
48
        x = np.random.uniform(-1, 1, size=(11, 17)).astype(np.float32)
49
        y_ref = gelu(x, approximate)
F
Feiyu Chan 已提交
50 51 52 53

        place = fluid.CUDAPlace(0)
        with dg.guard(place) as g:
            x_var = dg.to_variable(x)
54
            y_var = fluid.layers.gelu(x_var, approximate)
F
Feiyu Chan 已提交
55 56 57 58
            y_test = y_var.numpy()
        self.assertTrue(np.allclose(y_ref, y_test, rtol=1e-05, atol=1e-08))

    def test_cases(self):
59 60 61 62
        for approximate in [True, False]:
            self._test_case1_cpu(approximate)
            if fluid.is_compiled_with_cuda():
                self._test_case1_gpu(approximate)
F
Feiyu Chan 已提交
63

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
    def test_fast_math(self):
        if not paddle.is_compiled_with_cuda():
            return

        def use_fast_math(enabled):
            paddle.set_flags({'FLAGS_use_fast_math': enabled})

        shape = [11, 17, 8]
        x_np = np.random.uniform(-1, 1, size=shape).astype(np.float16)
        y_g_np = np.random.uniform(-1, 1, size=shape).astype(np.float16)

        def run_gelu_op(approximate):
            with dg.guard():
                x = paddle.to_tensor(x_np)
                x.stop_gradient = False
                y = F.gelu(x, approximate=approximate)
                x_grad = paddle.grad([y], [x], [paddle.to_tensor(y_g_np)])[0]
                return y.numpy(), x_grad.numpy()

        use_fast_math(True)
        y_fast_math, x_g_fast_math = run_gelu_op(True)
        use_fast_math(False)

        y_ref, x_g_ref = run_gelu_op(True)
        self.assertTrue(np.allclose(y_ref, y_fast_math, rtol=1e-5, atol=5e-4))

        self.assertTrue(
            np.allclose(
                x_g_ref, x_g_fast_math, rtol=1e-5, atol=5e-4))

F
Feiyu Chan 已提交
94 95 96

if __name__ == '__main__':
    unittest.main()