config.py 16.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import copy
from typing import Dict, Union

import paddle
19
from paddle import nn
20 21 22
from paddle.nn import Layer

from .factory import QuanterFactory
23
from .wrapper import ObserveWrapper
24 25

# TODO: Implement quanted layer and fill the mapping dict
26
DEFAULT_QAT_LAYER_MAPPINGS: Dict[Layer, Layer] = {
W
whs 已提交
27
    nn.quant.Stub: nn.quant.stub.QuanterStub,
28 29 30
    nn.Linear: nn.quant.qat.QuantedLinear,
    nn.Conv2D: nn.quant.qat.QuantedConv2D,
}
31 32 33 34

DEFAULT_LEAVES = [nn.ReLU, nn.AvgPool2D]


35
class SingleLayerConfig:
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
    r"""
    Configure how to quantize the activations and weights of a single layer.

    Args:
        activation(QuanterFactory): The factory to create instance of quanter used to quantize activations.
        weight(QuanterFactory): The factory to create instance of quanter used to quantize weights.
    """

    def __init__(self, activation: QuanterFactory, weight: QuanterFactory):
        self._activation = activation
        self._weight = weight

    @property
    def activation(self):
        return self._activation

    @property
    def weight(self):
        return self._weight

    def __str__(self):
        return f"activation: {self._activation}\nweight: {self._weight}"


60
class QuantConfig:
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
    r"""
    Configure how to quantize a model or a part of the model. It will map each layer to
    an instance of SingleLayerConfig by the settings. It provides diverse methods to set
    the strategies of quantization.

    Args:
        activation(QuanterFactory): The global quantizer used to quantize the activations.
        weight(QuanterFactory): The global quantizer used to quantize the weights.

    Examples:
       .. code-block:: python

          from paddle.quantization import QuantConfig
          from paddle.quantization.quanters import FakeQuanterWithAbsMaxObserver

          quanter = FakeQuanterWithAbsMaxObserver(moving_rate=0.9)
          q_config = QuantConfig(activation=quanter, weight=quanter)
          print(q_config)

    """

    def __init__(self, activation: QuanterFactory, weight: QuanterFactory):
        if activation is None and weight is None:
            self._global_config = None
        else:
            self._global_config = SingleLayerConfig(activation, weight)
        self._layer2config = {}
        self._prefix2config = {}
        self._type2config = {}
        self._model = None
        self._qat_layer_mapping = copy.deepcopy(DEFAULT_QAT_LAYER_MAPPINGS)
92
        self._customized_qat_layer_mapping = {}
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120

        self._customized_leaves = []

    def add_layer_config(
        self,
        layer: Union[Layer, list],
        activation: QuanterFactory = None,
        weight: QuanterFactory = None,
    ):
        r"""
         Set the quantization config by layer. It has the highest priority among
         all the setting methods.

         Args:
             layer(Union[Layer, list]): One or a list of layers.
             activation(QuanterFactory): Quanter used for activations.
             weight(QuanterFactory): Quanter used for weights.

         Examples:
        .. code-block:: python

             import paddle
             from paddle.nn import Linear
             from paddle.quantization import QuantConfig
             from paddle.quantization.quanters import FakeQuanterWithAbsMaxObserver

             class Model(paddle.nn.Layer):
                 def __init__(self):
121
                     super().__init__()
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
                     self.fc = Linear(576, 120)
             model = Model()
             quanter = FakeQuanterWithAbsMaxObserver(moving_rate=0.9)
             q_config = QuantConfig(activation=None, weight=None)
             q_config.add_layer_config([model.fc], activation=quanter, weight=quanter)
             print(q_config)

        """
        if isinstance(layer, list):
            for _element in layer:
                self.add_layer_config(
                    _element, activation=activation, weight=weight
                )
        else:
            self.add_name_config(
                layer.full_name(), activation=activation, weight=weight
            )

    def add_name_config(
        self,
        layer_name: Union[str, list],
        activation: QuanterFactory = None,
        weight: QuanterFactory = None,
    ):
        r"""
         Set the quantization config by full name of layer. Its priority is
         lower than `add_layer_config`.

         Args:
             layer_name(Union[str, list]): One or a list of layers' full name.
             activation(QuanterFactory): Quanter used for activations.
             weight(QuanterFactory): Quanter used for weights.

         Examples:
        .. code-block:: python

             import paddle
             from paddle.nn import Linear
             from paddle.quantization import QuantConfig
             from paddle.quantization.quanters import FakeQuanterWithAbsMaxObserver

             class Model(paddle.nn.Layer):
                 def __init__(self):
165
                     super().__init__()
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
                     self.fc = Linear(576, 120)
             model = Model()
             quanter = FakeQuanterWithAbsMaxObserver(moving_rate=0.9)
             q_config = QuantConfig(activation=None, weight=None)
             q_config.add_name_config([model.fc.full_name()], activation=quanter, weight=quanter)
             print(q_config)

        """
        if isinstance(layer_name, str):
            config = SingleLayerConfig(activation, weight)
            self._prefix2config[layer_name] = config
        if isinstance(layer_name, list):
            for _element in layer_name:
                self.add_name_config(
                    _element, activation=activation, weight=weight
                )

    def add_type_config(
        self,
        layer_type: Union[type, list],
        activation: QuanterFactory = None,
        weight: QuanterFactory = None,
    ):
        r"""
        Set the quantization config by the type of layer. The `layer_type` should be
        subclass of `paddle.nn.Layer`. Its priority is lower than `add_layer_config`
        and `add_name_config`.

        Args:
            layer_type(Union[type, list]): One or a list of layers' type. It should be subclass of
            `paddle.nn.Layer`. Python build-in function `type()` can be used to get the type of a layer.
            activation(QuanterFactory): Quanter used for activations.
            weight(QuanterFactory): Quanter used for weights.

        Examples:
        .. code-block:: python

            import paddle
            from paddle.nn import Linear
            from paddle.quantization import QuantConfig
            from paddle.quantization.quanters import FakeQuanterWithAbsMaxObserver

            class Model(paddle.nn.Layer):
                def __init__(self):
210
                    super().__init__()
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
                    self.fc = Linear(576, 120)
            model = Model()
            quanter = FakeQuanterWithAbsMaxObserver(moving_rate=0.9)
            q_config = QuantConfig(activation=None, weight=None)
            q_config.add_type_config([Linear], activation=quanter, weight=quanter)
            print(q_config)

        """
        if isinstance(layer_type, type) and issubclass(
            layer_type, paddle.nn.Layer
        ):
            config = SingleLayerConfig(activation, weight)
            self._type2config[layer_type] = config
        if isinstance(layer_type, list):
            for _element in layer_type:
                self.add_type_config(
                    _element, activation=activation, weight=weight
                )

    def add_qat_layer_mapping(self, source: type, target: type):
        r"""
        Add rules converting layers to simulated quantization layers
        before quantization-aware training. It will convert layers
        with type `source` to layers with type `target`. `source` and
        `target` should be subclass of `paddle.nn.Layer`. And a default
        mapping is provided by property `default_qat_layer_mapping`.

        Args:
            source(type): The type of layers that will be converted.
            target(type): The type of layers that will be converted to.

        Examples:
        .. code-block:: python

            from paddle.nn import Conv2D
            from paddle.quantization import QuantConfig
            from paddle.quantization.quanters import FakeQuanterWithAbsMaxObserver
            quanter = FakeQuanterWithAbsMaxObserver(moving_rate=0.9)
            q_config = QuantConfig(activation=None, weight=None)
            class CustomizedQuantedConv2D:
                def forward(self, x):
                    pass
                    # add some code for quantization simulation
            q_config.add_qat_layer_mapping(Conv2D, CustomizedQuantedConv2D)
        """
        assert isinstance(source, type) and issubclass(
            source, paddle.nn.Layer
        ), "The source layer to be placed should be a subclass of paddle.nn.Layer"
        assert isinstance(target, type) and issubclass(
            source, paddle.nn.Layer
        ), "The target layer should be a subclass of paddle.nn.qat.Layer"
        self._qat_layer_mapping[source] = target
263
        self._customized_qat_layer_mapping[source] = target
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298

    def add_customized_leaf(self, layer_type: type):
        r"""
        Declare the customized layer as leaf of model for quantization.
        The leaf layer is quantized as one layer. The sublayers of
        leaf layer will not be quantized.

        Args:
            layer_type(type): The type of layer to be declared as leaf.

        Examples:
        .. code-block:: python

            from paddle.nn import Sequential
            from paddle.quantization import QuantConfig
            from paddle.quantization.quanters import FakeQuanterWithAbsMaxObserver
            q_config = QuantConfig(activation=None, weight=None)
            q_config.add_customized_leaf(Sequential)

        """
        self._customized_leaves.append(layer_type)

    @property
    def customized_leaves(self):
        r"""
        Get all the customized leaves.
        """
        return self._customized_leaves

    def _need_observe(self, layer: Layer):
        r"""
        Whether the layer should be observed by observer.
        """
        return self._is_leaf(layer) and self._has_observer_config(layer)

299 300
    def _get_qat_layer(self, layer: Layer):
        q_config = self._get_config_by_layer(layer)
301 302 303 304 305

        target_type = self._customized_qat_layer_mapping.get(
            type(layer), self.qat_layer_mappings.get(type(layer))
        )
        return target_type(layer, q_config)
306

307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
    def _has_observer_config(self, layer: Layer):
        r"""
        Whether the layer has been configured for activation quantization.
        """
        _config = self._get_config_by_layer(layer)
        return _config is not None and _config.activation is not None

    def _is_leaf(self, layer: Layer):
        return (
            self._is_default_leaf(layer)
            or self._is_real_leaf(layer)
            or self._is_customized_leaf(layer)
        )

    def _is_default_leaf(self, layer: Layer):
        return type(layer) in DEFAULT_LEAVES

    def _is_real_leaf(self, layer: Layer):
        r"""
        The leaf is real leaf when it has no sublayers.
        """
        return layer._sub_layers is None or len(layer._sub_layers) == 0

    def _is_customized_leaf(self, layer: Layer):
        return type(layer) in self.customized_leaves

    def _get_observer(self, layer: Layer):
        r"""
        Create an instance of observer or quanter according to the
        given layer's quantization config.
        """
        _config = self._get_config_by_layer(layer)
        _observer = None if _config is None else _config.activation
        return None if _observer is None else _observer._instance(layer)

342 343 344 345
    def _get_observe_wrapper(self, layer: Layer):
        _observer = self._get_observer(layer)
        return ObserveWrapper(_observer, layer)

346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
    @property
    def qat_layer_mappings(self):
        return self._qat_layer_mapping

    @property
    def default_qat_layer_mapping(self):
        return DEFAULT_QAT_LAYER_MAPPINGS

    @property
    def global_config(self) -> SingleLayerConfig:
        return self._global_config

    def _get_config_by_layer(self, layer) -> SingleLayerConfig:
        return self._layer2config.get(layer, None)

    def _is_quantifiable(self, layer: Layer):
        r"""
        The layer is quantifiable when it configured by activation quanter/observer
        or weight quanter/observer.
        """
        return layer in self._layer2config

    def _specify(self, model: Layer):
        r"""
        Specify the quantization config of each sublayer in model.
        For each layer in sublayers of mode,
        1. Set the config by global config
        2. Overwrite the config with parents' config
        3. Overwrite the config with config set by layer's type
        4. Overwrite the config with config set by layer's full name
        5. Overwrite the config with config set by layer

        Args:
            model(Layer): The model to be specified by the config.

        Examples:
        .. code-block:: python

            import paddle
            from paddle.nn import Linear, Sequential
            from paddle.quantization import QuantConfig
            from paddle.quantization.quanters import FakeQuanterWithAbsMaxObserver

            class Model(paddle.nn.Layer):
                def __init__(self):
391
                    super().__init__()
392 393 394 395 396 397 398 399 400 401 402 403 404 405
                    self.fc = Sequential(Linear(576, 120),Linear(576, 120))
            model = Model()
            quanter = FakeQuanterWithAbsMaxObserver(moving_rate=0.9)
            q_config = QuantConfig(activation=None, weight=None)
            q_config.add_layer_config([model.fc], activation=quanter, weight=quanter)
            q_config._specify(model)
        """
        self._model = model
        self._specify_helper(self._model)

    def _specify_helper(self, model: Layer):
        for child in model.children():
            layer_prefix = child.full_name()
            config = self._layer2config.get(model, self.global_config)
406

407 408 409 410 411 412 413 414 415 416 417
            config = self._type2config.get(type(child), config)
            config = self._prefix2config.get(layer_prefix, config)
            if config is not None:
                self._layer2config[child] = config
            self._specify_helper(child)
        return self

    def details(self) -> str:
        r"""
        Get the formated details of current config.
        """
418 419
        if self._model is None:
            return self.__str__()
420 421 422 423 424 425 426
        return self._details_helper(self._model)

    def _details_helper(self, layer: Layer):
        sublayer_lines = []
        for name, sublayer in layer.named_children():
            sublayer_str = self._details_helper(sublayer)
            sublayer_str = self._addindent(sublayer_str, 2)
427 428 429 430 431 432 433 434 435
            if sublayer in self._layer2config:
                sublayer_lines.append(
                    '('
                    + name
                    + '): '
                    + sublayer_str
                    + ', '
                    + str(self._layer2config[sublayer])
                )
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461

        final_str = layer.__class__.__name__ + '('
        if sublayer_lines:
            final_str += '\n  ' + '\n  '.join(sublayer_lines) + '\n'

        final_str += ')'
        return final_str

    def _addindent(self, string, indent):
        s1 = string.split('\n')
        if len(s1) == 1:
            return string
        s2 = []
        for idx, line in enumerate(s1):
            if idx > 0:
                s2.append(str((indent * ' ') + line))
        return s1[0] + '\n' + '\n'.join(s2)

    def __str__(self):
        result = ""
        result += f"Global config:\n{self._global_config}\n"
        if len(self._type2config) > 0:
            result += f"Layer type config:\n{self._type2config}\n"
        if len(self._prefix2config) > 0:
            result += f"Layer prefix config: \n{self._prefix2config}\n"
        return result