test_pad3d_op.py 29.9 KB
Newer Older
L
littletomatodonkey 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
16

L
littletomatodonkey 已提交
17
import numpy as np
W
wanghuancoder 已提交
18
from eager_op_test import OpTest
19

L
littletomatodonkey 已提交
20 21
import paddle
import paddle.nn.functional as F
22 23 24 25 26 27 28 29
from paddle import nn
from paddle.fluid import (
    Executor,
    Program,
    core,
    default_main_program,
    program_guard,
)
L
littletomatodonkey 已提交
30 31 32 33 34 35 36 37


class TestPad3dOp(OpTest):
    def setUp(self):
        paddle.enable_static()
        self.value = 0.0
        self.initTestCase()
        self.op_type = "pad3d"
38
        self.python_api = paddle.nn.functional.pad
L
littletomatodonkey 已提交
39 40 41 42
        self.inputs = {'X': np.random.random(self.shape).astype("float64")}
        self.attrs = {}
        if self.variable_paddings:
            self.attrs['paddings'] = []
43 44 45
            self.inputs['Paddings'] = (
                np.array(self.paddings).flatten().astype("int32")
            )
L
littletomatodonkey 已提交
46
        else:
47 48 49
            self.attrs['paddings'] = (
                np.array(self.paddings).flatten().astype("int32")
            )
L
littletomatodonkey 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
        self.attrs['value'] = self.value
        self.attrs['mode'] = self.mode
        self.attrs['data_format'] = self.data_format
        if self.data_format == "NCDHW":
            paddings = [
                (0, 0),
                (0, 0),
                (self.paddings[4], self.paddings[5]),
                (self.paddings[2], self.paddings[3]),
                (self.paddings[0], self.paddings[1]),
            ]
        else:
            paddings = [
                (0, 0),
                (self.paddings[4], self.paddings[5]),
                (self.paddings[2], self.paddings[3]),
                (self.paddings[0], self.paddings[1]),
                (0, 0),
            ]
        if self.mode == "constant":
70 71 72 73 74 75
            out = np.pad(
                self.inputs['X'],
                paddings,
                mode=self.mode,
                constant_values=self.value,
            )
L
littletomatodonkey 已提交
76 77 78 79 80 81 82 83 84
        elif self.mode == "reflect":
            out = np.pad(self.inputs['X'], paddings, mode=self.mode)
        elif self.mode == "replicate":
            out = np.pad(self.inputs['X'], paddings, mode="edge")
        elif self.mode == "circular":
            out = np.pad(self.inputs['X'], paddings, mode="wrap")
        self.outputs = {'Out': out}

    def test_check_output(self):
W
wanghuancoder 已提交
85
        self.check_output()
L
littletomatodonkey 已提交
86 87

    def test_check_grad_normal(self):
W
wanghuancoder 已提交
88
        self.check_grad(['X'], 'Out')
L
littletomatodonkey 已提交
89 90 91 92 93 94 95

    def initTestCase(self):
        self.shape = (2, 3, 4, 5, 6)
        self.paddings = [0, 0, 0, 0, 0, 0]
        self.mode = "constant"
        self.data_format = "NCDHW"
        self.pad_value = 0.0
96
        self.variable_paddings = False
L
littletomatodonkey 已提交
97 98 99 100 101 102 103 104 105


class TestCase1(TestPad3dOp):
    def initTestCase(self):
        self.shape = (2, 3, 4, 5, 6)
        self.paddings = [0, 1, 2, 3, 4, 5]
        self.mode = "constant"
        self.data_format = "NCDHW"
        self.value = 1.0
106
        self.variable_paddings = False
L
littletomatodonkey 已提交
107 108 109 110 111 112 113 114 115


class TestCase2(TestPad3dOp):
    def initTestCase(self):
        self.shape = (2, 3, 4, 5, 6)
        self.paddings = [1, 1, 1, 1, 1, 1]
        self.mode = "constant"
        self.data_format = "NDHWC"
        self.value = 1.0
116
        self.variable_paddings = False
L
littletomatodonkey 已提交
117 118 119 120 121 122 123 124


class TestCase3(TestPad3dOp):
    def initTestCase(self):
        self.shape = (2, 3, 4, 5, 6)
        self.paddings = [0, 1, 1, 0, 2, 3]
        self.mode = "reflect"
        self.data_format = "NCDHW"
125
        self.variable_paddings = False
L
littletomatodonkey 已提交
126 127 128 129 130 131 132 133


class TestCase4(TestPad3dOp):
    def initTestCase(self):
        self.shape = (4, 4, 4, 4, 4)
        self.paddings = [0, 1, 2, 1, 2, 3]
        self.mode = "reflect"
        self.data_format = "NDHWC"
134
        self.variable_paddings = False
L
littletomatodonkey 已提交
135 136 137 138 139 140 141 142


class TestCase5(TestPad3dOp):
    def initTestCase(self):
        self.shape = (2, 3, 4, 5, 6)
        self.paddings = [0, 1, 2, 3, 2, 1]
        self.mode = "replicate"
        self.data_format = "NCDHW"
143
        self.variable_paddings = False
L
littletomatodonkey 已提交
144 145 146 147 148 149 150 151


class TestCase6(TestPad3dOp):
    def initTestCase(self):
        self.shape = (4, 4, 4, 4, 4)
        self.paddings = [5, 4, 2, 1, 2, 3]
        self.mode = "replicate"
        self.data_format = "NDHWC"
152
        self.variable_paddings = False
L
littletomatodonkey 已提交
153 154 155 156 157 158 159 160


class TestCase7(TestPad3dOp):
    def initTestCase(self):
        self.shape = (2, 3, 4, 5, 6)
        self.paddings = [0, 1, 2, 3, 2, 1]
        self.mode = "circular"
        self.data_format = "NCDHW"
161
        self.variable_paddings = False
L
littletomatodonkey 已提交
162 163 164 165 166 167 168 169


class TestCase8(TestPad3dOp):
    def initTestCase(self):
        self.shape = (4, 4, 4, 4, 4)
        self.paddings = [0, 1, 2, 1, 2, 3]
        self.mode = "circular"
        self.data_format = "NDHWC"
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
        self.variable_paddings = False


class TestCase9(TestPad3dOp):
    def initTestCase(self):
        self.shape = (2, 3, 4, 5, 6)
        self.paddings = [0, 1, 2, 3, 4, 5]
        self.mode = "constant"
        self.data_format = "NCDHW"
        self.value = 1.0
        self.variable_paddings = True


class TestCase10(TestPad3dOp):
    def initTestCase(self):
        self.shape = (2, 3, 4, 5, 6)
        self.paddings = [0, 1, 2, 3, 4, 5]
        self.mode = "constant"
        self.data_format = "NDHWC"
        self.value = 1.0
        self.variable_paddings = True
L
littletomatodonkey 已提交
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206


class TestPadAPI(unittest.TestCase):
    def setUp(self):
        self.places = [paddle.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.places.append(paddle.CUDAPlace(0))

    def check_static_result_1(self, place):
        paddle.enable_static()
        with program_guard(Program(), Program()):
            input_shape = (1, 2, 3, 4, 5)
            pad = [1, 2, 1, 1, 3, 4]
            mode = "constant"
            value = 100
            input_data = np.random.rand(*input_shape).astype(np.float32)
207
            x = paddle.static.data(name="x", shape=input_shape)
208 209 210
            result = F.pad(
                x=x, pad=pad, value=value, mode=mode, data_format="NCDHW"
            )
L
littletomatodonkey 已提交
211
            exe = Executor(place)
212 213 214 215 216
            fetches = exe.run(
                default_main_program(),
                feed={"x": input_data},
                fetch_list=[result],
            )
L
littletomatodonkey 已提交
217 218

            np_out = self._get_numpy_out(input_data, pad, mode, value)
219
            np.testing.assert_allclose(fetches[0], np_out, rtol=1e-05)
L
littletomatodonkey 已提交
220 221 222 223 224 225 226 227

    def check_static_result_2(self, place):
        paddle.enable_static()
        with program_guard(Program(), Program()):
            input_shape = (2, 3, 4, 5, 6)
            pad = [1, 2, 1, 1, 1, 2]
            mode = "reflect"
            input_data = np.random.rand(*input_shape).astype(np.float32)
228
            x = paddle.static.data(name="x", shape=input_shape)
L
littletomatodonkey 已提交
229 230 231
            result1 = F.pad(x=x, pad=pad, mode=mode, data_format="NCDHW")
            result2 = F.pad(x=x, pad=pad, mode=mode, data_format="NDHWC")
            exe = Executor(place)
232 233 234 235 236 237 238 239 240 241 242 243
            fetches = exe.run(
                default_main_program(),
                feed={"x": input_data},
                fetch_list=[result1, result2],
            )

            np_out1 = self._get_numpy_out(
                input_data, pad, mode, data_format="NCDHW"
            )
            np_out2 = self._get_numpy_out(
                input_data, pad, mode, data_format="NDHWC"
            )
244 245
            np.testing.assert_allclose(fetches[0], np_out1, rtol=1e-05)
            np.testing.assert_allclose(fetches[1], np_out2, rtol=1e-05)
L
littletomatodonkey 已提交
246 247 248 249 250 251 252 253

    def check_static_result_3(self, place):
        paddle.enable_static()
        with program_guard(Program(), Program()):
            input_shape = (2, 3, 4, 5, 6)
            pad = [1, 2, 1, 1, 3, 4]
            mode = "replicate"
            input_data = np.random.rand(*input_shape).astype(np.float32)
254
            x = paddle.static.data(name="x", shape=input_shape)
L
littletomatodonkey 已提交
255 256 257
            result1 = F.pad(x=x, pad=pad, mode=mode, data_format="NCDHW")
            result2 = F.pad(x=x, pad=pad, mode=mode, data_format="NDHWC")
            exe = Executor(place)
258 259 260 261 262 263 264 265 266 267 268 269
            fetches = exe.run(
                default_main_program(),
                feed={"x": input_data},
                fetch_list=[result1, result2],
            )

            np_out1 = self._get_numpy_out(
                input_data, pad, mode, data_format="NCDHW"
            )
            np_out2 = self._get_numpy_out(
                input_data, pad, mode, data_format="NDHWC"
            )
270 271
            np.testing.assert_allclose(fetches[0], np_out1, rtol=1e-05)
            np.testing.assert_allclose(fetches[1], np_out2, rtol=1e-05)
L
littletomatodonkey 已提交
272 273 274 275 276 277 278 279

    def check_static_result_4(self, place):
        paddle.enable_static()
        with program_guard(Program(), Program()):
            input_shape = (2, 3, 4, 5, 6)
            pad = [1, 2, 1, 1, 3, 4]
            mode = "circular"
            input_data = np.random.rand(*input_shape).astype(np.float32)
280
            x = paddle.static.data(name="x", shape=input_shape)
L
littletomatodonkey 已提交
281 282 283
            result1 = F.pad(x=x, pad=pad, mode=mode, data_format="NCDHW")
            result2 = F.pad(x=x, pad=pad, mode=mode, data_format="NDHWC")
            exe = Executor(place)
284 285 286 287 288 289 290 291 292 293 294 295
            fetches = exe.run(
                default_main_program(),
                feed={"x": input_data},
                fetch_list=[result1, result2],
            )

            np_out1 = self._get_numpy_out(
                input_data, pad, mode, data_format="NCDHW"
            )
            np_out2 = self._get_numpy_out(
                input_data, pad, mode, data_format="NDHWC"
            )
296 297
            np.testing.assert_allclose(fetches[0], np_out1, rtol=1e-05)
            np.testing.assert_allclose(fetches[1], np_out2, rtol=1e-05)
L
littletomatodonkey 已提交
298

299 300 301
    def _get_numpy_out(
        self, input_data, pad, mode, value=0, data_format="NCDHW"
    ):
L
littletomatodonkey 已提交
302 303 304
        if mode == "constant" and len(pad) == len(input_data.shape) * 2:
            pad = np.reshape(pad, (-1, 2)).tolist()
        elif data_format == "NCDHW":
L
littletomatodonkey 已提交
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
            pad = [
                (0, 0),
                (0, 0),
                (pad[4], pad[5]),
                (pad[2], pad[3]),
                (pad[0], pad[1]),
            ]
        elif data_format == "NDHWC":
            pad = [
                (0, 0),
                (pad[4], pad[5]),
                (pad[2], pad[3]),
                (pad[0], pad[1]),
                (0, 0),
            ]
        elif data_format == "NCHW":
            pad = [
                (0, 0),
                (0, 0),
                (pad[2], pad[3]),
                (pad[0], pad[1]),
            ]
        elif data_format == "NHWC":
            pad = [
                (0, 0),
                (pad[2], pad[3]),
                (pad[0], pad[1]),
                (0, 0),
            ]
        elif data_format == "NCL":
            pad = [
                (0, 0),
                (0, 0),
                (pad[0], pad[1]),
            ]
        elif data_format == "NLC":
            pad = [
                (0, 0),
                (pad[0], pad[1]),
                (0, 0),
            ]

        if mode == "constant":
            out = np.pad(input_data, pad, mode=mode, constant_values=value)
        elif mode == "reflect":
            out = np.pad(input_data, pad, mode=mode)
        elif mode == "replicate":
            out = np.pad(input_data, pad, mode="edge")
        elif mode == "circular":
            out = np.pad(input_data, pad, mode="wrap")

        return out

    def test_static(self):
        for place in self.places:
            self.check_static_result_1(place=place)
            self.check_static_result_2(place=place)
            self.check_static_result_3(place=place)
            self.check_static_result_4(place=place)

    def test_dygraph_1(self):
        paddle.disable_static()
        input_shape = (1, 2, 3, 4, 5)
        pad = [1, 2, 1, 1, 3, 4]
L
littletomatodonkey 已提交
369
        pad_3 = [1, 2, 1, 1, 3, 4, 5, 6, 7, 8]
L
littletomatodonkey 已提交
370 371 372
        mode = "constant"
        value = 100
        input_data = np.random.rand(*input_shape).astype(np.float32)
373 374 375 376 377 378 379 380 381
        np_out1 = self._get_numpy_out(
            input_data, pad, mode, value, data_format="NCDHW"
        )
        np_out2 = self._get_numpy_out(
            input_data, pad, mode, value, data_format="NDHWC"
        )
        np_out3 = self._get_numpy_out(
            input_data, pad_3, mode, value, data_format="NCDHW"
        )
L
littletomatodonkey 已提交
382 383
        tensor_data = paddle.to_tensor(input_data)

384 385 386 387 388 389 390 391 392
        y1 = F.pad(
            tensor_data, pad=pad, mode=mode, value=value, data_format="NCDHW"
        )
        y2 = F.pad(
            tensor_data, pad=pad, mode=mode, value=value, data_format="NDHWC"
        )
        y3 = F.pad(
            tensor_data, pad=pad_3, mode=mode, value=value, data_format="NCDHW"
        )
L
littletomatodonkey 已提交
393

394 395 396
        np.testing.assert_allclose(y1.numpy(), np_out1, rtol=1e-05)
        np.testing.assert_allclose(y2.numpy(), np_out2, rtol=1e-05)
        np.testing.assert_allclose(y3.numpy(), np_out3, rtol=1e-05)
L
littletomatodonkey 已提交
397 398 399 400 401

    def test_dygraph_2(self):
        paddle.disable_static()
        input_shape = (2, 3, 4, 5)
        pad = [1, 1, 3, 4]
L
littletomatodonkey 已提交
402
        pad_3 = [1, 2, 1, 1, 3, 4, 5, 6]
L
littletomatodonkey 已提交
403 404 405
        mode = "constant"
        value = 100
        input_data = np.random.rand(*input_shape).astype(np.float32)
406 407 408 409 410 411 412 413 414
        np_out1 = self._get_numpy_out(
            input_data, pad, mode, value, data_format="NCHW"
        )
        np_out2 = self._get_numpy_out(
            input_data, pad, mode, value, data_format="NHWC"
        )
        np_out3 = self._get_numpy_out(
            input_data, pad_3, mode, value, data_format="NCHW"
        )
L
littletomatodonkey 已提交
415 416 417 418

        tensor_data = paddle.to_tensor(input_data)
        tensor_pad = paddle.to_tensor(pad, dtype="int32")

419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
        y1 = F.pad(
            tensor_data,
            pad=tensor_pad,
            mode=mode,
            value=value,
            data_format="NCHW",
        )
        y2 = F.pad(
            tensor_data,
            pad=tensor_pad,
            mode=mode,
            value=value,
            data_format="NHWC",
        )
        y3 = F.pad(
            tensor_data, pad=pad_3, mode=mode, value=value, data_format="NCHW"
        )
L
littletomatodonkey 已提交
436

437 438 439
        np.testing.assert_allclose(y1.numpy(), np_out1, rtol=1e-05)
        np.testing.assert_allclose(y2.numpy(), np_out2, rtol=1e-05)
        np.testing.assert_allclose(y3.numpy(), np_out3, rtol=1e-05)
L
littletomatodonkey 已提交
440 441 442 443 444

    def test_dygraph_3(self):
        paddle.disable_static()
        input_shape = (3, 4, 5)
        pad = [3, 4]
L
littletomatodonkey 已提交
445
        pad_3 = [3, 4, 5, 6, 7, 8]
L
littletomatodonkey 已提交
446 447 448
        mode = "constant"
        value = 100
        input_data = np.random.rand(*input_shape).astype(np.float32)
449 450 451 452 453 454 455 456 457
        np_out1 = self._get_numpy_out(
            input_data, pad, mode, value, data_format="NCL"
        )
        np_out2 = self._get_numpy_out(
            input_data, pad, mode, value, data_format="NLC"
        )
        np_out3 = self._get_numpy_out(
            input_data, pad_3, mode, value, data_format="NCL"
        )
L
littletomatodonkey 已提交
458 459 460
        tensor_data = paddle.to_tensor(input_data)
        tensor_pad = paddle.to_tensor(pad, dtype="int32")

461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
        y1 = F.pad(
            tensor_data,
            pad=tensor_pad,
            mode=mode,
            value=value,
            data_format="NCL",
        )
        y2 = F.pad(
            tensor_data,
            pad=tensor_pad,
            mode=mode,
            value=value,
            data_format="NLC",
        )
        y3 = F.pad(
            tensor_data, pad=pad_3, mode=mode, value=value, data_format="NCL"
        )
L
littletomatodonkey 已提交
478

479 480 481
        np.testing.assert_allclose(y1.numpy(), np_out1, rtol=1e-05)
        np.testing.assert_allclose(y2.numpy(), np_out2, rtol=1e-05)
        np.testing.assert_allclose(y3.numpy(), np_out3, rtol=1e-05)
L
littletomatodonkey 已提交
482 483 484


class TestPad1dAPI(unittest.TestCase):
485 486 487
    def _get_numpy_out(
        self, input_data, pad, mode, value=0.0, data_format="NCL"
    ):
L
littletomatodonkey 已提交
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
        if data_format == "NCL":
            pad = [
                (0, 0),
                (0, 0),
                (pad[0], pad[1]),
            ]
        else:
            pad = [
                (0, 0),
                (pad[0], pad[1]),
                (0, 0),
            ]

        if mode == "constant":
            out = np.pad(input_data, pad, mode=mode, constant_values=value)
        elif mode == "reflect":
            out = np.pad(input_data, pad, mode=mode)
        elif mode == "replicate":
            out = np.pad(input_data, pad, mode="edge")
L
littletomatodonkey 已提交
507 508
        elif mode == "circular":
            out = np.pad(input_data, pad, mode="wrap")
L
littletomatodonkey 已提交
509 510 511 512 513 514 515 516 517 518 519 520 521

        return out

    def setUp(self):
        self.places = [paddle.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.places.append(paddle.CUDAPlace(0))

    def test_class(self):
        paddle.disable_static()
        for place in self.places:
            input_shape = (3, 4, 5)
            pad = [1, 2]
522
            pad_int = 1
L
littletomatodonkey 已提交
523 524 525
            value = 100
            input_data = np.random.rand(*input_shape).astype(np.float32)

L
littletomatodonkey 已提交
526 527 528
            pad_reflection = nn.Pad1D(padding=pad, mode="reflect")
            pad_replication = nn.Pad1D(padding=pad, mode="replicate")
            pad_constant = nn.Pad1D(padding=pad, mode="constant", value=value)
529 530 531
            pad_constant_int = nn.Pad1D(
                padding=pad_int, mode="constant", value=value
            )
L
littletomatodonkey 已提交
532
            pad_circular = nn.Pad1D(padding=pad, mode="circular")
L
littletomatodonkey 已提交
533 534 535 536

            data = paddle.to_tensor(input_data)

            output = pad_reflection(data)
537 538 539
            np_out = self._get_numpy_out(
                input_data, pad, "reflect", data_format="NCL"
            )
540
            np.testing.assert_allclose(output.numpy(), np_out, rtol=1e-05)
L
littletomatodonkey 已提交
541 542

            output = pad_replication(data)
543 544 545
            np_out = self._get_numpy_out(
                input_data, pad, "replicate", data_format="NCL"
            )
546
            np.testing.assert_allclose(output.numpy(), np_out, rtol=1e-05)
L
littletomatodonkey 已提交
547 548

            output = pad_constant(data)
549 550 551
            np_out = self._get_numpy_out(
                input_data, pad, "constant", value=value, data_format="NCL"
            )
552
            np.testing.assert_allclose(output.numpy(), np_out, rtol=1e-05)
L
littletomatodonkey 已提交
553

554
            output = pad_constant_int(data)
555 556 557 558 559 560 561
            np_out = self._get_numpy_out(
                input_data,
                [pad_int] * 2,
                "constant",
                value=value,
                data_format="NCL",
            )
562
            np.testing.assert_allclose(output.numpy(), np_out, rtol=1e-05)
563

L
littletomatodonkey 已提交
564
            output = pad_circular(data)
565 566 567
            np_out = self._get_numpy_out(
                input_data, pad, "circular", value=value, data_format="NCL"
            )
568
            np.testing.assert_allclose(output.numpy(), np_out, rtol=1e-05)
L
littletomatodonkey 已提交
569

L
littletomatodonkey 已提交
570 571

class TestPad2dAPI(unittest.TestCase):
572 573 574
    def _get_numpy_out(
        self, input_data, pad, mode, value=0.0, data_format="NCHW"
    ):
L
littletomatodonkey 已提交
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
        if data_format == "NCHW":
            pad = [
                (0, 0),
                (0, 0),
                (pad[2], pad[3]),
                (pad[0], pad[1]),
            ]
        else:
            pad = [
                (0, 0),
                (pad[2], pad[3]),
                (pad[0], pad[1]),
                (0, 0),
            ]

        if mode == "constant":
            out = np.pad(input_data, pad, mode=mode, constant_values=value)
        elif mode == "reflect":
            out = np.pad(input_data, pad, mode=mode)
        elif mode == "replicate":
            out = np.pad(input_data, pad, mode="edge")
L
littletomatodonkey 已提交
596 597
        elif mode == "circular":
            out = np.pad(input_data, pad, mode="wrap")
L
littletomatodonkey 已提交
598 599 600 601 602 603 604 605 606 607 608 609 610

        return out

    def setUp(self):
        self.places = [paddle.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.places.append(paddle.CUDAPlace(0))

    def test_class(self):
        paddle.disable_static()
        for place in self.places:
            input_shape = (3, 4, 5, 6)
            pad = [1, 2, 2, 1]
611
            pad_int = 1
L
littletomatodonkey 已提交
612 613 614
            value = 100
            input_data = np.random.rand(*input_shape).astype(np.float32)

L
littletomatodonkey 已提交
615 616 617
            pad_reflection = nn.Pad2D(padding=pad, mode="reflect")
            pad_replication = nn.Pad2D(padding=pad, mode="replicate")
            pad_constant = nn.Pad2D(padding=pad, mode="constant", value=value)
618 619 620
            pad_constant_int = nn.Pad2D(
                padding=pad_int, mode="constant", value=value
            )
L
littletomatodonkey 已提交
621
            pad_circular = nn.Pad2D(padding=pad, mode="circular")
L
littletomatodonkey 已提交
622 623 624 625

            data = paddle.to_tensor(input_data)

            output = pad_reflection(data)
626 627 628
            np_out = self._get_numpy_out(
                input_data, pad, "reflect", data_format="NCHW"
            )
629
            np.testing.assert_allclose(output.numpy(), np_out, rtol=1e-05)
L
littletomatodonkey 已提交
630 631

            output = pad_replication(data)
632 633 634
            np_out = self._get_numpy_out(
                input_data, pad, "replicate", data_format="NCHW"
            )
635
            np.testing.assert_allclose(output.numpy(), np_out, rtol=1e-05)
L
littletomatodonkey 已提交
636 637

            output = pad_constant(data)
638 639 640
            np_out = self._get_numpy_out(
                input_data, pad, "constant", value=value, data_format="NCHW"
            )
641
            np.testing.assert_allclose(output.numpy(), np_out, rtol=1e-05)
L
littletomatodonkey 已提交
642

643
            output = pad_constant_int(data)
644 645 646 647 648 649 650
            np_out = self._get_numpy_out(
                input_data,
                [pad_int] * 4,
                "constant",
                value=value,
                data_format="NCHW",
            )
651
            np.testing.assert_allclose(output.numpy(), np_out, rtol=1e-05)
652

L
littletomatodonkey 已提交
653
            output = pad_circular(data)
654 655 656
            np_out = self._get_numpy_out(
                input_data, pad, "circular", data_format="NCHW"
            )
657
            np.testing.assert_allclose(output.numpy(), np_out, rtol=1e-05)
L
littletomatodonkey 已提交
658 659 660


class TestPad3dAPI(unittest.TestCase):
661 662 663
    def _get_numpy_out(
        self, input_data, pad, mode, value=0.0, data_format="NCDHW"
    ):
L
littletomatodonkey 已提交
664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
        if data_format == "NCDHW":
            pad = [
                (0, 0),
                (0, 0),
                (pad[4], pad[5]),
                (pad[2], pad[3]),
                (pad[0], pad[1]),
            ]
        else:
            pad = [
                (0, 0),
                (pad[4], pad[5]),
                (pad[2], pad[3]),
                (pad[0], pad[1]),
                (0, 0),
            ]

        if mode == "constant":
            out = np.pad(input_data, pad, mode=mode, constant_values=value)
        elif mode == "reflect":
            out = np.pad(input_data, pad, mode=mode)
        elif mode == "replicate":
            out = np.pad(input_data, pad, mode="edge")
L
littletomatodonkey 已提交
687 688
        elif mode == "circular":
            out = np.pad(input_data, pad, mode="wrap")
L
littletomatodonkey 已提交
689 690 691 692 693 694 695 696 697 698 699 700 701

        return out

    def setUp(self):
        self.places = [paddle.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.places.append(paddle.CUDAPlace(0))

    def test_class(self):
        paddle.disable_static()
        for place in self.places:
            input_shape = (3, 4, 5, 6, 7)
            pad = [1, 2, 2, 1, 1, 0]
702
            pad_int = 1
L
littletomatodonkey 已提交
703 704 705
            value = 100
            input_data = np.random.rand(*input_shape).astype(np.float32)

L
littletomatodonkey 已提交
706 707 708
            pad_reflection = nn.Pad3D(padding=pad, mode="reflect")
            pad_replication = nn.Pad3D(padding=pad, mode="replicate")
            pad_constant = nn.Pad3D(padding=pad, mode="constant", value=value)
709 710 711
            pad_constant_int = nn.Pad3D(
                padding=pad_int, mode="constant", value=value
            )
L
littletomatodonkey 已提交
712
            pad_circular = nn.Pad3D(padding=pad, mode="circular")
L
littletomatodonkey 已提交
713 714 715

            data = paddle.to_tensor(input_data)

L
littletomatodonkey 已提交
716
            output = pad_reflection(data)
717 718 719
            np_out = self._get_numpy_out(
                input_data, pad, "reflect", data_format="NCDHW"
            )
720
            np.testing.assert_allclose(output.numpy(), np_out, rtol=1e-05)
L
littletomatodonkey 已提交
721

L
littletomatodonkey 已提交
722
            output = pad_replication(data)
723 724 725
            np_out = self._get_numpy_out(
                input_data, pad, "replicate", data_format="NCDHW"
            )
726
            np.testing.assert_allclose(output.numpy(), np_out, rtol=1e-05)
L
littletomatodonkey 已提交
727 728

            output = pad_constant(data)
729 730 731
            np_out = self._get_numpy_out(
                input_data, pad, "constant", value=value, data_format="NCDHW"
            )
732
            np.testing.assert_allclose(output.numpy(), np_out, rtol=1e-05)
L
littletomatodonkey 已提交
733

734
            output = pad_constant_int(data)
735 736 737 738 739 740 741
            np_out = self._get_numpy_out(
                input_data,
                [pad_int] * 6,
                "constant",
                value=value,
                data_format="NCDHW",
            )
742
            np.testing.assert_allclose(output.numpy(), np_out, rtol=1e-05)
743

L
littletomatodonkey 已提交
744
            output = pad_circular(data)
745 746 747
            np_out = self._get_numpy_out(
                input_data, pad, "circular", data_format="NCDHW"
            )
748
            np.testing.assert_allclose(output.numpy(), np_out, rtol=1e-05)
L
littletomatodonkey 已提交
749

750 751 752 753 754 755 756 757
    def test_pad_tensor(self):
        paddle.disable_static()
        for place in self.places:
            input_shape = (3, 4, 5, 6, 7)
            pad = [1, 2, 2, 1, 1, 0]
            pad_tensor = paddle.to_tensor(pad)
            input_data = np.random.rand(*input_shape).astype(np.float32)

758 759 760 761 762 763
            pad_reflection_ncdhw = nn.Pad3D(
                padding=pad_tensor, mode="reflect", data_format="NCDHW"
            )
            pad_reflection_ndhwc = nn.Pad3D(
                padding=pad_tensor, mode="reflect", data_format="NDHWC"
            )
764 765 766
            data = paddle.to_tensor(input_data)

            output = pad_reflection_ncdhw(data)
767 768 769
            np_out = self._get_numpy_out(
                input_data, pad, "reflect", data_format="NCDHW"
            )
770
            np.testing.assert_allclose(output.numpy(), np_out, rtol=1e-05)
771 772

            output = pad_reflection_ndhwc(data)
773 774 775
            np_out = self._get_numpy_out(
                input_data, pad, "reflect", data_format="NDHWC"
            )
776
            np.testing.assert_allclose(output.numpy(), np_out, rtol=1e-05)
777

L
littletomatodonkey 已提交
778 779

class TestPad3dOpError(unittest.TestCase):
780 781 782 783 784
    def setUp(self):
        self.places = [paddle.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.places.append(paddle.CUDAPlace(0))

L
littletomatodonkey 已提交
785 786 787 788
    def test_errors(self):
        def test_variable():
            input_shape = (1, 2, 3, 4, 5)
            data = np.random.rand(*input_shape).astype(np.float32)
789
            y = F.pad(x=data, pad=[1, 1, 1, 1, 1, 1], data_format="NCDHW")
L
littletomatodonkey 已提交
790 791 792 793

        def test_reflect_1():
            input_shape = (1, 2, 3, 4, 5)
            data = np.random.rand(*input_shape).astype(np.float32)
794
            x = paddle.to_tensor(data)
795 796 797 798 799 800 801
            y = F.pad(
                x,
                pad=[5, 6, 1, 1, 1, 1],
                value=1,
                mode='reflect',
                data_format="NCDHW",
            )
L
littletomatodonkey 已提交
802 803 804 805

        def test_reflect_2():
            input_shape = (1, 2, 3, 4, 5)
            data = np.random.rand(*input_shape).astype(np.float32)
806
            x = paddle.to_tensor(data)
807 808 809 810 811 812 813
            y = F.pad(
                x,
                pad=[1, 1, 4, 3, 1, 1],
                value=1,
                mode='reflect',
                data_format="NCDHW",
            )
L
littletomatodonkey 已提交
814 815 816 817

        def test_reflect_3():
            input_shape = (1, 2, 3, 4, 5)
            data = np.random.rand(*input_shape).astype(np.float32)
818
            x = paddle.to_tensor(data)
819 820 821 822 823 824 825
            y = F.pad(
                x,
                pad=[1, 1, 1, 1, 2, 3],
                value=1,
                mode='reflect',
                data_format="NCDHW",
            )
826 827 828 829 830

        def test_circular_1():
            input_shape = (1, 2, 0, 4, 5)
            data = np.random.rand(*input_shape).astype(np.float32)
            x = paddle.to_tensor(data)
831 832 833
            y = F.pad(
                x, pad=[1, 1, 1, 1, 2, 3], mode='circular', data_format="NCDHW"
            )
L
littletomatodonkey 已提交
834

835 836 837 838
        def test_replicate_1():
            input_shape = (1, 2, 0, 4, 5)
            data = np.random.rand(*input_shape).astype(np.float32)
            x = paddle.to_tensor(data)
839 840 841
            y = F.pad(
                x, pad=[1, 1, 1, 1, 2, 3], mode='replicate', data_format="NCDHW"
            )
842

843 844 845 846 847 848 849
        paddle.disable_static()
        for place in self.places:
            self.assertRaises(ValueError, test_variable)
            self.assertRaises(Exception, test_reflect_1)
            self.assertRaises(Exception, test_reflect_2)
            self.assertRaises(Exception, test_reflect_3)
            self.assertRaises(Exception, test_circular_1)
850
            self.assertRaises(Exception, test_replicate_1)
851
        paddle.enable_static()
L
littletomatodonkey 已提交
852 853


854 855 856 857 858
class TestPadDataformatError(unittest.TestCase):
    def test_errors(self):
        def test_ncl():
            input_shape = (1, 2, 3, 4)
            pad = paddle.to_tensor(np.array([2, 1, 2, 1]).astype('int32'))
859 860 861 862 863 864
            data = (
                np.arange(np.prod(input_shape), dtype=np.float64).reshape(
                    input_shape
                )
                + 1
            )
L
littletomatodonkey 已提交
865
            my_pad = nn.Pad1D(padding=pad, mode="replicate", data_format="NCL")
866 867 868 869 870 871
            data = paddle.to_tensor(data)
            result = my_pad(data)

        def test_nchw():
            input_shape = (1, 2, 4)
            pad = paddle.to_tensor(np.array([2, 1, 2, 1]).astype('int32'))
872 873 874 875 876 877
            data = (
                np.arange(np.prod(input_shape), dtype=np.float64).reshape(
                    input_shape
                )
                + 1
            )
L
littletomatodonkey 已提交
878
            my_pad = nn.Pad1D(padding=pad, mode="replicate", data_format="NCHW")
879 880 881 882 883 884
            data = paddle.to_tensor(data)
            result = my_pad(data)

        def test_ncdhw():
            input_shape = (1, 2, 3, 4)
            pad = paddle.to_tensor(np.array([2, 1, 2, 1]).astype('int32'))
885 886 887 888 889 890 891 892 893
            data = (
                np.arange(np.prod(input_shape), dtype=np.float64).reshape(
                    input_shape
                )
                + 1
            )
            my_pad = nn.Pad1D(
                padding=pad, mode="replicate", data_format="NCDHW"
            )
894 895 896 897 898 899 900 901 902 903
            data = paddle.to_tensor(data)
            result = my_pad(data)

        self.assertRaises(AssertionError, test_ncl)

        self.assertRaises(AssertionError, test_nchw)

        self.assertRaises(AssertionError, test_ncdhw)


L
littletomatodonkey 已提交
904 905
if __name__ == '__main__':
    unittest.main()