random.py 8.5 KB
Newer Older
W
wuhuachaocoding 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import contextlib
16 17 18 19

import numpy as np

import paddle
20
from paddle import _legacy_C_ops
21
from paddle.common_ops_import import Variable
W
wuhuachaocoding 已提交
22 23
from paddle.fluid import core
from paddle.fluid.data_feeder import check_variable_and_dtype
24 25
from paddle.fluid.framework import in_dygraph_mode
from paddle.framework import LayerHelper
W
wuhuachaocoding 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89

__all__ = []

MODEL_PARALLEL_RNG = 'model_parallel_rng'

# This file is inspired by Megatron to control random states for MP:
# https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/mpu/random.py


class RNGStatesTracker:
    """
    Tracker the RNG states.
    """

    def __init__(self):
        # Map from name to the rng state.
        self.states_ = {}
        self.seeds_ = set()

    def reset(self):
        self.states_ = {}
        self.seeds_ = set()

    def add(self, name, seed):
        if seed in self.seeds_:
            raise ValueError('seed {} already exists'.format(seed))
        self.seeds_.add(seed)
        if name in self.states_:
            raise ValueError('state {} already exists'.format(name))
        orig_rng_state = paddle.get_cuda_rng_state()
        paddle.seed(seed)
        self.states_[name] = paddle.get_cuda_rng_state()
        paddle.set_cuda_rng_state(orig_rng_state)

    def get_states_tracker(self):
        states = {}
        for name in self.states_:
            states[name] = self.states_[name]
        return states

    def set_states_tracker(self, states):
        self.states_ = states

    @contextlib.contextmanager
    def rng_state(self, name=MODEL_PARALLEL_RNG):
        if name not in self.states_:
            raise ValueError('state {} does not exist'.format(name))
        orig_cuda_rng_state = paddle.get_cuda_rng_state()
        paddle.set_cuda_rng_state(self.states_[name])
        try:
            yield
        finally:
            self.states_[name] = paddle.get_cuda_rng_state()
            paddle.set_cuda_rng_state(orig_cuda_rng_state)


RNG_STATE_TRACKER = RNGStatesTracker()


def get_rng_state_tracker():
    return RNG_STATE_TRACKER


def model_parallel_random_seed(seed=None):
90
    from paddle.distributed import fleet
91

W
wuhuachaocoding 已提交
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
    hcg = fleet.get_hybrid_communicate_group()
    rank = hcg.get_model_parallel_rank()

    if seed:
        global_seed = seed
        local_seed = seed * 1024 + rank * 100
    else:
        global_seed = np.random.randint(0, 655350)
        local_seed = np.random.randint(rank * 10000, (rank + 1) * 10000 - 1)

    RNG_STATE_TRACKER.reset()
    RNG_STATE_TRACKER.add(MODEL_PARALLEL_RNG, local_seed)
    paddle.seed(global_seed)


def determinate_seed(rng_name):
    assert rng_name is not None and rng_name != ""
    helper = LayerHelper('seed', **locals())
    out = helper.create_variable_for_type_inference(dtype=paddle.int32)
    # set force_cpu to reduce sync copy from CPU->GPU->CPU, and reduce pipeline hang
112 113 114 115 116
    helper.append_op(
        type='seed',
        outputs={'Out': out},
        attrs={'deterministic': True, 'rng_name': rng_name, 'force_cpu': True},
    )
W
wuhuachaocoding 已提交
117 118 119
    return out


120 121 122 123 124 125 126 127 128
def dropout(
    x,
    p=0.5,
    axis=None,
    rng_name=None,
    training=True,
    mode="upscale_in_train",
    name=None,
):
W
wuhuachaocoding 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
    """
    Dropout is a regularization technique for reducing overfitting by preventing
    neuron co-adaption during training. The dropout operator randomly sets the
    outputs of some units to zero, while upscale others according to the given
    dropout probability.

    Args:
        x (Tensor): The input tensor. The data type is float32 or float64.
        p (float|int): Probability of setting units to zero. Default 0.5.
        axis (int|list|tuple): The axis along which the dropout is performed. Default None.
        rng_name (str): The random seed generator name, which used to obtain deterministic results.
        training (bool): A flag indicating whether it is in train phrase or not. Default True.
        mode(str): ['upscale_in_train'(default) | 'downscale_in_infer'].

                           1. upscale_in_train(default), upscale the output at training time

                              - train: out = input * mask / ( 1.0 - dropout_prob )
                              - inference: out = input

                           2. downscale_in_infer, downscale the output at inference

                              - train: out = input * mask
                              - inference: out = input * (1.0 - dropout_prob)
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor representing the dropout, has same shape and data type as `x` .


    Examples:
        We use ``p=0.5`` in the following description for simplicity.

        1. When ``axis=None`` , this is commonly used dropout, which dropout each element of x randomly.

        ..  code-block:: text

            Let's see a simple case when x is a 2d tensor with shape 2*3:
            [[1 2 3]
             [4 5 6]]
            we generate mask with the same shape as x, which is 2*3. The value of mask is
            sampled from a Bernoulli distribution randomly. For example, we may get such mask:
            [[0 1 0]
             [1 0 1]]
            So the output is obtained from elementwise multiply of x and mask:
            [[0 2 0]
             [4 0 6]]
            Using default setting, i.e. ``mode='upscale_in_train'`` ,
            if in training phase, the final upscale output is:
            [[0 4 0 ]
             [8 0 12]]
            if in test phase, the output is the same as input:
            [[1 2 3]
             [4 5 6]]
            we can also set ``mode='downscale_in_infer'`` , then
            if in training phase, the final output is:
            [[0 2 0]
             [4 0 6]]
            if in test phase, the scale output is:
            [[0.5 1.  1.5]
             [2.  2.5 3. ]]

    """
    if rng_name is None:
        return paddle.nn.functional.dropout(x, p, axis, training, mode, name)

    if not isinstance(p, (float, int, Variable)):
        raise TypeError("p argument should be a number(int|float) or Variable")

    # fast return for p == 0
198 199
    if isinstance(p, (int, float)) and p == 0:
        return x
W
wuhuachaocoding 已提交
200 201

    assert 0 <= p <= 1, ValueError("p argument should between 0 and 1")
202 203 204
    assert mode in ('downscale_in_infer', 'upscale_in_train'), ValueError(
        "mode argument should be 'downscale_in_infer' or 'upscale_in_train'"
    )
W
wuhuachaocoding 已提交
205

206 207 208
    assert axis is None, TypeError(
        "unsupport axis when using random seed generator"
    )
W
wuhuachaocoding 已提交
209

210 211 212
    mode = (
        'downgrade_in_infer' if mode == 'downscale_in_infer' else mode
    )  # semantic transfer
W
wuhuachaocoding 已提交
213 214

    # dygraph using tracker, doesn't need determinate seed
215
    if in_dygraph_mode():
216 217 218 219 220 221 222 223 224 225 226 227 228
        out, mask = _legacy_C_ops.dropout(
            x,
            'dropout_prob',
            p,
            'is_test',
            not training,
            'fix_seed',
            False,
            'seed',
            0,
            'dropout_implementation',
            mode,
        )
W
wuhuachaocoding 已提交
229
        return out
230 231
    else:
        seed = determinate_seed(rng_name)
W
wuhuachaocoding 已提交
232

233 234 235 236 237
        if isinstance(p, Variable) and not p.shape != [1]:
            raise TypeError(
                "Required p.shape == [1] if type(p) is Variable, but received p.shape = {}".format(
                    p.shape
                )
238
            )
W
wuhuachaocoding 已提交
239

240 241 242 243
        helper = LayerHelper('dropout', **locals())
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'dropout'
        )
W
wuhuachaocoding 已提交
244

245 246 247 248
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        mask = helper.create_variable_for_type_inference(
            dtype=core.VarDesc.VarType.UINT8, stop_gradient=True
        )
249

250 251 252 253 254 255 256 257 258 259 260
        helper.append_op(
            type='dropout',
            inputs={'X': [x], 'Seed': seed},
            outputs={'Out': [out], 'Mask': [mask]},
            attrs={
                'dropout_prob': p,
                'is_test': not training,
                'dropout_implementation': mode,
            },
        )
        return out