skip_layernorm.cc 8.3 KB
Newer Older
1
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
16 17
#include "paddle/fluid/inference/tensorrt/convert/utils.h"
#include "paddle/fluid/inference/tensorrt/engine.h"
18 19 20 21 22 23 24 25

namespace paddle {
namespace inference {
namespace tensorrt {

class SkipLayerNormOpConverter : public OpConverter {
 public:
  void operator()(const framework::proto::OpDesc& op,
26 27
                  const framework::Scope& scope,
                  bool test_mode) override {
28
    VLOG(4) << "convert fused skip layernorm op to tensorrt layer";
29 30 31 32
    PADDLE_ENFORCE_EQ(engine_->with_dynamic_shape(),
                      true,
                      platform::errors::InvalidArgument(
                          "Skip_layernorm must run the dynamic shape mode."));
33
    framework::OpDesc op_desc(op, nullptr);
34 35 36 37 38 39 40 41
    auto GetWeight =
        [&](const std::string& arg_name) -> TensorRTEngine::Weight {
      std::string var_name = op_desc.Input(arg_name).front();
      auto* temp_var = scope.FindVar(var_name);
      auto* temp_tensor = temp_var->GetMutable<phi::DenseTensor>();
      auto weight = engine_->GetTrtWeight(var_name, *temp_tensor);
      return weight;
    };
42 43 44 45 46 47 48
    // Declare inputs
    auto* input1 = engine_->GetITensor(op_desc.Input("X")[0]);
    auto* input2 = engine_->GetITensor(op_desc.Input("Y")[0]);
    std::vector<nvinfer1::ITensor*> inputs;
    inputs.push_back(input1);
    inputs.push_back(input2);

49 50 51 52
    bool enable_int8 = false;
    if (op_desc.HasAttr("enable_int8")) {
      enable_int8 = PADDLE_GET_CONST(bool, op_desc.GetAttr("enable_int8"));
    }
53 54 55 56 57 58 59 60 61

    std::vector<float> smooth_scale;
    bool use_smooth = false;
    if (op_desc.HasAttr("smooth_scale")) {
      smooth_scale =
          PADDLE_GET_CONST(std::vector<float>, op_desc.GetAttr("smooth_scale"));
      use_smooth = true;
    }

62 63
    auto bias_weight = GetWeight("Bias").get();
    auto scale_weight = GetWeight("Scale").get();
64
    nvinfer1::ILayer* layer = nullptr;
65 66 67
    bool flag_varseqlen = engine_->use_varseqlen() &&
                          engine_->tensorrt_transformer_posid() != "" &&
                          engine_->tensorrt_transformer_maskid() != "";
68 69 70 71 72
    if (flag_varseqlen && engine_->with_interleaved()) {
      VLOG(4) << "fused skip_layernorm op: use_varseqlen and with_interleaved";
      if (!enable_int8) {
        PADDLE_THROW(
            platform::errors::Fatal("use with_interleaved must be int8."));
73
      }
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
      auto creator = GetPluginRegistry()->getPluginCreator(
          "CustomSkipLayerNormPluginDynamic", "3");
      PADDLE_ENFORCE_NE(
          creator,
          nullptr,
          platform::errors::InvalidArgument(
              "fail to get creator of CustomSkipLayerNormPluginDynamic"));
      const std::vector<nvinfer1::PluginField> fields{
          {"beta",
           bias_weight.values,
           GetPluginFieldType(bias_weight.type),
           static_cast<int32_t>(bias_weight.count)},
          {"gamma",
           scale_weight.values,
           GetPluginFieldType(scale_weight.type),
           static_cast<int32_t>(scale_weight.count)}};
      nvinfer1::PluginFieldCollection* pluginPtr =
          static_cast<nvinfer1::PluginFieldCollection*>(
              malloc(sizeof(nvinfer1::PluginFieldCollection) +
                     fields.size() * sizeof(nvinfer1::PluginField)));
      pluginPtr->nbFields = static_cast<int32_t>(fields.size());
      pluginPtr->fields = fields.data();

      auto pluginObj =
          creator->createPlugin("CustomSkipLayerNormPluginDynamic", pluginPtr);

      free(pluginPtr);

      auto plugin_layer = engine_->network()->addPluginV2(
          inputs.data(), inputs.size(), *pluginObj);

      PADDLE_ENFORCE_NE(
          plugin_layer,
          nullptr,
          platform::errors::InvalidArgument(
              "fail to add CustomSkipLayerNormPluginDynamic layer"));
      layer = plugin_layer;
111
    } else {
112 113 114 115 116 117 118 119 120 121 122 123
      auto creator = GetPluginRegistry()->getPluginCreator(
          "CustomSkipLayerNormPluginDynamic", "2");
      PADDLE_ENFORCE_NE(
          creator,
          nullptr,
          platform::errors::InvalidArgument(
              "fail to get creator of CustomSkipLayerNormPluginDynamic"));
      int32_t type = static_cast<int32_t>((engine_->WithFp16() == 1)
                                              ? nvinfer1::DataType::kHALF
                                              : nvinfer1::DataType::kFLOAT);
      if (enable_int8) {
        type = static_cast<int32_t>(nvinfer1::DataType::kHALF);
124
      }
125 126 127 128 129 130 131 132
      int32_t hidden_size =
          PADDLE_GET_CONST(int32_t, op_desc.GetAttr("hidden_size"));
      PADDLE_ENFORCE_GT(hidden_size,
                        0,
                        platform::errors::InvalidArgument(
                            "in CustomSkipLayerNormPluginDynamic hidden "
                            "dimension should > 0"));

133
      std::vector<nvinfer1::PluginField> fields{
134 135 136 137 138 139 140 141 142 143 144 145
          {"type_id", &type, nvinfer1::PluginFieldType::kINT32, 1},
          {"ld", &hidden_size, nvinfer1::PluginFieldType::kINT32, 1},
          {"beta",
           bias_weight.values,
           GetPluginFieldType(bias_weight.type),
           static_cast<int32_t>(bias_weight.count)},
          {"gamma",
           scale_weight.values,
           GetPluginFieldType(scale_weight.type),
           static_cast<int32_t>(scale_weight.count)},
      };

146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
      if (use_smooth) {
        VLOG(4) << "using special method, make sure you have correct version "
                   "of tensorrt";
        type = static_cast<int32_t>(nvinfer1::DataType::kINT8);
        fields.push_back({"smooth_scale",
                          smooth_scale.data(),
                          nvinfer1::PluginFieldType::kFLOAT32,
                          static_cast<int32_t>(smooth_scale.size())});
        nvinfer1::PluginFieldCollection* pluginPtr =
            static_cast<nvinfer1::PluginFieldCollection*>(
                malloc(sizeof(nvinfer1::PluginFieldCollection) +
                       fields.size() *
                           sizeof(nvinfer1::PluginField)));  // remember to free
        pluginPtr->nbFields = static_cast<int32_t>(fields.size());
        pluginPtr->fields = fields.data();

        auto pluginObj = creator->createPlugin(
            "CustomSkipLayerNormPluginDynamicWithSmooth", pluginPtr);

        free(pluginPtr);

        auto plugin_layer = engine_->network()->addPluginV2(
            inputs.data(), inputs.size(), *pluginObj);

        PADDLE_ENFORCE_NE(
            plugin_layer,
            nullptr,
            platform::errors::InvalidArgument(
                "fail to add CustomSkipLayerNormPluginDynamicWithSmooth "
                "layer"));
        layer = plugin_layer;
      } else {
        nvinfer1::PluginFieldCollection* pluginPtr =
            static_cast<nvinfer1::PluginFieldCollection*>(
                malloc(sizeof(nvinfer1::PluginFieldCollection) +
                       fields.size() *
                           sizeof(nvinfer1::PluginField)));  // remember to free
        pluginPtr->nbFields = static_cast<int32_t>(fields.size());
        pluginPtr->fields = fields.data();

        auto pluginObj = creator->createPlugin(
            "CustomSkipLayerNormPluginDynamic", pluginPtr);

        free(pluginPtr);

        auto plugin_layer = engine_->network()->addPluginV2(
            inputs.data(), inputs.size(), *pluginObj);

        PADDLE_ENFORCE_NE(
            plugin_layer,
            nullptr,
            platform::errors::InvalidArgument(
                "fail to add CustomSkipLayerNormPluginDynamic layer"));
        layer = plugin_layer;
      }
201 202 203 204 205 206 207 208 209 210 211
    }
    auto output_name = op_desc.Output("Out")[0];
    RreplenishLayerAndOutput(layer, "skip_layernorm", {output_name}, test_mode);
  }
};

}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle

REGISTER_TRT_OP_CONVERTER(skip_layernorm, SkipLayerNormOpConverter);