train.py 4.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle.fluid as fluid
import numpy
import sys

TRAIN_FILES = ['train.recordio']
TEST_FILES = ['test.recordio']

22
DICT_DIM = 5147
23 24 25 26 27 28 29 30 31 32 33 34 35

# embedding dim
emb_dim = 128

# hidden dim
hid_dim = 128

# hidden dim2
hid_dim2 = 96

# class num
class_dim = 2

36 37
# epoch num
epoch_num = 10
38 39


40 41 42 43 44 45 46 47 48 49 50 51
def build_program(is_train):
    file_obj_handle = fluid.layers.io.open_files(
        filenames=TRAIN_FILES if is_train else TEST_FILES,
        shapes=[[-1, 1], [-1, 1]],
        lod_levels=[1, 0],
        dtypes=['int64', 'int64'],
        thread_num=1)
    if is_train:
        file_obj = fluid.layers.io.shuffle(file_obj_handle, buffer_size=1000)
    else:
        file_obj = file_obj_handle
    file_obj = fluid.layers.io.double_buffer(file_obj)
52

53
    with fluid.unique_name.guard():
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83

        data, label = fluid.layers.read_file(file_obj)

        emb = fluid.layers.embedding(input=data, size=[DICT_DIM, emb_dim])

        # sequence conv with window size = 3
        win_size = 3
        conv_3 = fluid.nets.sequence_conv_pool(
            input=emb,
            num_filters=hid_dim,
            filter_size=win_size,
            act="tanh",
            pool_type="max")

        # fc layer after conv
        fc_1 = fluid.layers.fc(input=[conv_3], size=hid_dim2)

        # probability of each class
        prediction = fluid.layers.fc(input=[fc_1],
                                     size=class_dim,
                                     act="softmax")
        # cross entropy loss
        cost = fluid.layers.cross_entropy(input=prediction, label=label)

        # mean loss
        avg_cost = fluid.layers.mean(x=cost)
        acc = fluid.layers.accuracy(input=prediction, label=label)

        if is_train:
            # SGD optimizer
84
            sgd_optimizer = fluid.optimizer.Adagrad(learning_rate=0.001)
85 86
            sgd_optimizer.minimize(avg_cost)

87
    return {'loss': avg_cost, 'log': [avg_cost, acc], 'file': file_obj_handle}
88 89 90 91 92


def main():
    train = fluid.Program()
    startup = fluid.Program()
93
    test = fluid.Program()
94 95

    with fluid.program_guard(train, startup):
96
        train_args = build_program(is_train=True)
97

98 99
    with fluid.program_guard(test, startup):
        test_args = build_program(is_train=False)
100

101
    use_cuda = fluid.core.is_compiled_with_cuda()
102
    # startup
103
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
104 105 106 107
    exe = fluid.Executor(place=place)
    exe.run(startup)

    train_exe = fluid.ParallelExecutor(
108 109 110 111 112
        use_cuda=use_cuda,
        loss_name=train_args['loss'].name,
        main_program=train)
    test_exe = fluid.ParallelExecutor(
        use_cuda=use_cuda, main_program=test, share_vars_from=train_exe)
113 114

    fetch_var_list = [var.name for var in train_args['log']]
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
    for epoch_id in range(epoch_num):
        # train
        try:
            batch_id = 0
            while True:
                result = map(numpy.array,
                             train_exe.run(fetch_list=fetch_var_list
                                           if batch_id % 10 == 0 else []))
                if len(result) != 0:
                    print 'Train loss: ', result
                batch_id += 1
        except fluid.core.EOFException:
            print 'End of epoch', epoch_id
            train_args['file'].reset()

        # test
        loss = []
        acc = []
        try:
            while True:
                loss_np, acc_np = map(numpy.array,
                                      test_exe.run(fetch_list=fetch_var_list))
                loss.append(loss_np[0])
                acc.append(acc_np[0])
        except:
            test_args['file'].reset()
            print 'TEST: ', numpy.mean(loss), numpy.mean(acc)
142 143 144 145


if __name__ == '__main__':
    main()