elementwise_mul_op.h 3.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15

#pragma once
16
#include "paddle/fluid/operators/elementwise_op.h"
Y
Yi Wang 已提交
17
#include "paddle/fluid/operators/elementwise_op_function.h"
18
#include "paddle/fluid/operators/math/blas.h"
19 20 21 22

namespace paddle {
namespace operators {

23 24 25 26 27
template <typename T>
struct MulFunctor {
  inline HOSTDEVICE T operator()(T a, T b) const { return a * b; }
};

28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
template <typename DeviceContext, typename T>
void default_elementwise_mul(const framework::ExecutionContext& ctx,
                             const framework::Tensor* x,
                             const framework::Tensor* y, framework::Tensor* z) {
  int axis = ctx.Attr<int>("axis");
  ElementwiseComputeEx<MulFunctor<T>, DeviceContext, T>(ctx, x, y, axis,
                                                        MulFunctor<T>(), z);
}

template <typename DeviceContext, typename T>
typename std::enable_if<
    std::is_floating_point<T>::value &&
    std::is_same<DeviceContext, platform::CPUDeviceContext>::value>::type
elementwise_mul(const framework::ExecutionContext& ctx,
                const framework::Tensor* x, const framework::Tensor* y,
                framework::Tensor* z) {
  auto blas = math::GetBlas<DeviceContext, T>(ctx);
  blas.VMUL(x->numel(), x->data<T>(), y->data<T>(),
            z->mutable_data<T>(ctx.GetPlace()));
}

template <typename DeviceContext, typename T>
typename std::enable_if<
    !std::is_floating_point<T>::value ||
    !std::is_same<DeviceContext, platform::CPUDeviceContext>::value>::type
elementwise_mul(const framework::ExecutionContext& ctx,
                const framework::Tensor* x, const framework::Tensor* y,
                framework::Tensor* z) {
  default_elementwise_mul<DeviceContext, T>(ctx, x, y, z);
}

Q
QI JUN 已提交
59
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
60
class ElementwiseMulKernel : public framework::OpKernel<T> {
61 62
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
C
chengduoZH 已提交
63 64 65 66 67 68
    using Tensor = framework::Tensor;

    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
    auto* z = ctx.Output<Tensor>("Out");
    z->mutable_data<T>(ctx.GetPlace());
69 70 71 72 73
    if (x->numel() == y->numel()) {
      elementwise_mul<DeviceContext, T>(ctx, x, y, z);
    } else {
      default_elementwise_mul<DeviceContext, T>(ctx, x, y, z);
    }
G
gongweibao 已提交
74 75
  }
};
76

G
gongweibao 已提交
77
template <typename T>
C
chengduoZH 已提交
78
struct MulGradDX {
C
chengduoZH 已提交
79
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return dout * y; }
80 81
};

G
gongweibao 已提交
82
template <typename T>
C
chengduoZH 已提交
83
struct MulGradDY {
C
chengduoZH 已提交
84
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return dout * x; }
G
gongweibao 已提交
85
};
C
chengduoZH 已提交
86

Q
QI JUN 已提交
87
template <typename DeviceContext, typename T>
88
class ElementwiseMulGradKernel : public ElemwiseGradKernel<T> {
G
gongweibao 已提交
89 90
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
91
    ElemwiseGradKernel<T>::Compute(ctx);
C
chengduoZH 已提交
92 93 94 95 96 97 98 99 100
    using Tensor = framework::Tensor;

    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
    auto* out = ctx.Input<Tensor>("Out");
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
    int axis = ctx.Attr<int>("axis");
C
chengduoZH 已提交
101 102
    ElemwiseGradCompute<DeviceContext, T, MulGradDX<T>, MulGradDY<T>>(
        ctx, *x, *y, *out, *dout, axis, dx, dy, MulGradDX<T>(), MulGradDY<T>());
G
gongweibao 已提交
103 104
  }
};
105 106
}  // namespace operators
}  // namespace paddle