backward_test.cc 13.4 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

Y
Yu Yang 已提交
15
#include "paddle/framework/backward.h"
D
dongzhihong 已提交
16

Y
Yu Yang 已提交
17 18
#include <gtest/gtest.h>
#include "paddle/framework/op_registry.h"
Y
Yan Chunwei 已提交
19
#include "paddle/operators/net_op.h"
Y
Yu Yang 已提交
20

Y
Yu Yang 已提交
21 22 23
namespace paddle {
namespace framework {

D
dongzhihong 已提交
24 25 26 27 28 29 30
using OperatorBase = framework::OperatorBase;
using OpProtoAndCheckerMaker = framework::OpProtoAndCheckerMaker;
using OpProto = framework::OpProto;
using OpAttrChecker = framework::OpAttrChecker;
using Scope = framework::Scope;
using DeviceContext = platform::DeviceContext;

Y
Yu Yang 已提交
31 32
class EmptyOp : public OperatorBase {
 public:
33 34 35 36 37
  EmptyOp(const std::string &type, const std::vector<std::string> &inputs,
          const std::vector<std::string> &outputs, const AttributeMap &attrs,
          std::unordered_map<std::string, int> *in_out_idxs)
      : OperatorBase(type, inputs, outputs, attrs, in_out_idxs) {}

Y
Yu Yang 已提交
38
  void InferShape(const Scope &scope) const override {}
D
dongzhihong 已提交
39
  void Run(const Scope &scope, const DeviceContext &dev_ctx) const override {}
Y
Yu Yang 已提交
40 41
};

Y
Yu Yang 已提交
42
class RowWiseAddOpMaker : public OpProtoAndCheckerMaker {
Y
Yu Yang 已提交
43
 public:
Y
Yu Yang 已提交
44
  RowWiseAddOpMaker(OpProto *proto, OpAttrChecker *op_checker)
Y
Yu Yang 已提交
45 46 47 48 49 50 51 52
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "Input X of Add").IgnoreGradient();
    AddInput("b", "Bias of Add").IgnoreGradient();
    AddOutput("Out", "Out of Add").IgnoreGradient();
    AddComment("Add Op");
  }
};

Y
Yu Yang 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
class MulOpMaker : public OpProtoAndCheckerMaker {
 public:
  MulOpMaker(OpProto *proto, OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("A", "A");
    AddInput("B", "B");
    AddOutput("Out", "Out");
    AddComment("Mul");
  }
};

class SigmoidOpMaker : public OpProtoAndCheckerMaker {
 public:
  SigmoidOpMaker(OpProto *proto, OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "X");
    AddOutput("Y", "Y");
    AddComment("Sigmoid");
  }
};

D
dongzhihong 已提交
74 75 76 77 78 79 80 81 82 83
class NoGradOpMaker : public OpProtoAndCheckerMaker {
 public:
  NoGradOpMaker(OpProto *proto, OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "X input");
    AddOutput("Y", "Y output");
    AddComment("NoGradOp, same input output. no Grad");
  }
};

D
dongzhihong 已提交
84
class FcOp : public operators::NetOp {
Y
Yu Yang 已提交
85 86 87
 public:
  void Init() override {
    AddOp(OpRegistry::CreateOp("mul", {Input("X"), Input("W")},
Y
Yu Yang 已提交
88
                               {Output("mul_result")}, {}));
Y
Yu Yang 已提交
89
    auto b_name = Input("b");
Y
Yu Yang 已提交
90
    std::string before_act = "mul_result";
91
    if (b_name != kEmptyVarName) {
Y
Yu Yang 已提交
92 93 94 95 96
      AddOp(OpRegistry::CreateOp("rowwise_add", {Output("mul_result"), b_name},
                                 {Output("add_result")}, {}));
      before_act = "add_result";
    } else {
      auto out_varname = Output("add_result");
97 98
      if (out_varname != kEmptyVarName) {
        this->Rename(out_varname, kEmptyVarName);
Y
Yu Yang 已提交
99
      }
Y
Yu Yang 已提交
100
    }
Y
Yu Yang 已提交
101 102 103

    AddOp(OpRegistry::CreateOp("sigmoid", {Output(before_act)}, {Output("Out")},
                               {}));
Y
Yu Yang 已提交
104 105 106 107 108 109 110 111 112 113 114
    CompleteAddOp(false);
  }
};

class FcOpMaker : public OpProtoAndCheckerMaker {
 public:
  FcOpMaker(OpProto *proto, OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "x");
    AddInput("W", "w");
    AddInput("b", "b");
Y
Yu Yang 已提交
115 116
    AddOutput("mul_result", "").SetTemporary();
    AddOutput("add_result", "").SetTemporary();
Y
Yu Yang 已提交
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
    AddOutput("Out", "");
    AddComment("");
  }
};

class ManyOutputOpMaker : public OpProtoAndCheckerMaker {
 public:
  ManyOutputOpMaker(OpProto *proto, OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("x", "x");
    AddOutput("y", "y");
    AddOutput("z", "z");
    AddComment("");
  }
};

class FillZeroOpMaker : public OpProtoAndCheckerMaker {
 public:
  FillZeroOpMaker(OpProto *proto, OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("x", "x");
    AddOutput("out", "out");
    AddComment("");
  }
};
Y
Yu Yang 已提交
142 143 144 145 146 147 148 149 150 151

class AddOpMaker : public OpProtoAndCheckerMaker {
 public:
  AddOpMaker(OpProto *proto, OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "x").SetMultiple();
    AddOutput("Y", "y");
    AddComment("");
  }
};
Y
Yu Yang 已提交
152 153 154 155
}  // namespace framework
}  // namespace paddle

namespace f = paddle::framework;
D
dongzhihong 已提交
156
namespace ops = paddle::operators;
Y
Yu Yang 已提交
157 158 159 160 161 162 163
using EnforceNotMet = paddle::platform::EnforceNotMet;
REGISTER_OP(rowwise_add, f::EmptyOp, f::RowWiseAddOpMaker);
REGISTER_GRADIENT_OP(rowwise_add, rowwise_add_grad, f::EmptyOp);
REGISTER_OP(mul, f::EmptyOp, f::MulOpMaker);
REGISTER_GRADIENT_OP(mul, mul_grad, f::EmptyOp);
REGISTER_OP(sigmoid, f::EmptyOp, f::SigmoidOpMaker);
REGISTER_GRADIENT_OP(sigmoid, sigmoid_grad, f::EmptyOp);
D
dongzhihong 已提交
164
REGISTER_OP(nograd, f::EmptyOp, f::NoGradOpMaker);
Y
Yu Yang 已提交
165
REGISTER_OP(fill_zeros_like, f::EmptyOp, f::FillZeroOpMaker);
Y
Yu Yang 已提交
166 167
REGISTER_OP(add, f::EmptyOp, f::AddOpMaker);
REGISTER_GRADIENT_OP(add, add_grad, f::EmptyOp);
D
dongzhihong 已提交
168 169 170
REGISTER_OP(fc, f::FcOp, f::FcOpMaker);
REGISTER_OP(many_output_op, f::EmptyOp, f::ManyOutputOpMaker);
REGISTER_GRADIENT_OP(many_output_op, many_output_op_grad, f::EmptyOp);
Y
Yu Yang 已提交
171

Y
Yu Yang 已提交
172
TEST(Backward, simple_op_grad) {
Y
Yu Yang 已提交
173 174
  auto fwd = f::OpRegistry::CreateOp("rowwise_add", {"X", "b"}, {"Out"}, {});
  ASSERT_NE(fwd, nullptr);
Y
Yu Yang 已提交
175
  auto gop = f::OpRegistry::CreateGradOp(*fwd);
176
  ASSERT_EQ(4UL, gop->inputs_.size());
177
  ASSERT_EQ(f::kEmptyVarName, gop->inputs_[0]);
Y
Yu Yang 已提交
178
  ASSERT_EQ("rowwise_add_grad", gop->type_);
179 180
  ASSERT_EQ(f::GradVarName("X"), gop->outputs_[0]);
  ASSERT_EQ(f::GradVarName("b"), gop->outputs_[1]);
Y
Yu Yang 已提交
181

182
  ASSERT_EQ(f::GradVarName("X"), gop->Output(f::GradVarName("X")));
Y
Yu Yang 已提交
183 184
}

D
dongzhihong 已提交
185
TEST(Backward, simple_op_not_need_grad) {
D
dongzhihong 已提交
186
  auto fwd = f::OpRegistry::CreateOp("rowwise_add", {"X", "b"}, {"Out"}, {});
D
dongzhihong 已提交
187
  ASSERT_NE(fwd, nullptr);
D
dongzhihong 已提交
188
  auto gop = f::Backward(*fwd, {"X"});
D
dongzhihong 已提交
189
  ASSERT_EQ(std::find(gop->outputs_.begin(), gop->outputs_.end(),
190
                      f::GradVarName("X")),
D
dongzhihong 已提交
191
            gop->outputs_.end());
D
dongzhihong 已提交
192

D
dongzhihong 已提交
193 194
  auto no_input_gop = f::Backward(*fwd, {"X", "b"});
  ASSERT_NE(no_input_gop, nullptr);
Y
Yu Yang 已提交
195
  ASSERT_TRUE(no_input_gop->IsNetOp());
Y
Yan Chunwei 已提交
196 197
  ASSERT_EQ(0UL,
            std::static_pointer_cast<ops::NetOp>(no_input_gop)->ops_.size());
D
dongzhihong 已提交
198 199
}

Y
Yu Yang 已提交
200
TEST(Backward, net_fc_backward_normal) {
Y
Yu Yang 已提交
201
  std::shared_ptr<f::OperatorBase> fwd = f::OpRegistry::CreateOp(
Y
Yu Yang 已提交
202
      "fc", {"X", "w", "b"}, {"mul_result", "add_result", "out"}, {});
Y
Stash  
Yu Yang 已提交
203 204 205
  ASSERT_NE(fwd, nullptr);
  std::shared_ptr<f::OperatorBase> gop = f::Backward(*fwd, {});
  ASSERT_TRUE(gop->IsNetOp());
Y
Yan Chunwei 已提交
206
  auto net = static_cast<ops::NetOp *>(gop.get());
Y
Stash  
Yu Yang 已提交
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221

  ASSERT_NO_THROW(net->DebugString());

  ASSERT_EQ(3UL, net->ops_.size());

  f::OperatorBase &d_sigmoid = *net->ops_[0];
  ASSERT_EQ("sigmoid_grad", d_sigmoid.type_);

  f::OperatorBase &d_add = *net->ops_[1];
  ASSERT_EQ("rowwise_add_grad", d_add.type_);

  f::OperatorBase &d_mul = *net->ops_[2];
  ASSERT_EQ("mul_grad", d_mul.type_);
}

Y
Yu Yang 已提交
222
TEST(Backward, net_fc_backward_not_have_b) {
Y
Yi Wang 已提交
223 224 225
  std::shared_ptr<f::OperatorBase> fwd =
      f::OpRegistry::CreateOp("fc", {"X", "w", f::kEmptyVarName},
                              {"mul_result", "add_result", "tmp"}, {});
Y
Stash  
Yu Yang 已提交
226 227 228
  ASSERT_NE(fwd, nullptr);
  std::shared_ptr<f::OperatorBase> gop = f::Backward(*fwd, {});
  ASSERT_TRUE(gop->IsNetOp());
Y
Yan Chunwei 已提交
229
  auto net = static_cast<ops::NetOp *>(gop.get());
Y
Stash  
Yu Yang 已提交
230 231 232 233 234 235 236 237 238 239 240 241

  ASSERT_NO_THROW(net->DebugString());

  ASSERT_EQ(2UL, net->ops_.size());

  f::OperatorBase &d_sigmoid = *net->ops_[0];
  ASSERT_EQ("sigmoid_grad", d_sigmoid.type_);

  f::OperatorBase &d_mul = *net->ops_[1];
  ASSERT_EQ("mul_grad", d_mul.type_);
}

Y
Yu Yang 已提交
242
TEST(Backward, net_input_of_network_not_need_grad) {
Y
Yan Chunwei 已提交
243
  ops::NetOp net;
Y
Yu Yang 已提交
244
  net.AddOp(f::OpRegistry::CreateOp("fc", {"X", "W1", "b1"},
Y
Yu Yang 已提交
245
                                    {"mul_tmp_0", "add_tmp_0", "hidden0"}, {}));
Y
Yu Yang 已提交
246
  net.AddOp(f::OpRegistry::CreateOp("fc", {"hidden0", "W2", "b2"},
Y
Yu Yang 已提交
247
                                    {"mul_tmp_1", "add_tmp_1", "hidden1"}, {}));
Y
Yu Yang 已提交
248
  net.CompleteAddOp();
Y
Stash  
Yu Yang 已提交
249 250
  auto bwd = Backward(net, {"X"});  // X@GRAD is not need.
  ASSERT_TRUE(bwd->IsNetOp());
Y
Yan Chunwei 已提交
251
  auto bwd_net = static_cast<ops::NetOp *>(bwd.get());
Y
Stash  
Yu Yang 已提交
252 253 254

  std::unordered_set<std::string> all_output = std::unordered_set<std::string>(
      bwd_net->outputs_.begin(), bwd_net->outputs_.end());
255
  all_output.erase(f::kEmptyVarName);
Y
Stash  
Yu Yang 已提交
256 257

  for (auto &out : {"W1", "b1", "hidden0", "W2", "b2"}) {
258
    ASSERT_NE(all_output.find(f::GradVarName(out)), all_output.end());
Y
Stash  
Yu Yang 已提交
259
  }
Y
Yu Yang 已提交
260 261

  // Not Generated X
262
  ASSERT_EQ(all_output.find(f::GradVarName("X")), all_output.end());
Y
Yu Yang 已提交
263

D
dongzhihong 已提交
264
  ASSERT_EQ(2UL, bwd_net->ops_.size());
Y
Yu Yang 已提交
265
  ASSERT_TRUE(bwd_net->ops_[1]->IsNetOp());
Y
Yan Chunwei 已提交
266
  auto first_fc_grad = static_cast<ops::NetOp *>(bwd_net->ops_[1].get());
D
dongzhihong 已提交
267
  ASSERT_EQ(3UL, first_fc_grad->ops_.size());
Y
Yi Wang 已提交
268
  ASSERT_EQ(f::kEmptyVarName,
269
            first_fc_grad->ops_[2]->Output(f::GradVarName("A")));
Y
Yu Yang 已提交
270 271 272
}

TEST(Backward, net_shared_weight) {
Y
Yan Chunwei 已提交
273
  ops::NetOp net;
Y
Yu Yang 已提交
274 275 276 277 278 279
  net.AddOp(f::OpRegistry::CreateOp("mul", {"X", "W"}, {"Out"}, {}));
  net.AddOp(f::OpRegistry::CreateOp("mul", {"Out", "W"}, {"FinalOut"}, {}));
  net.CompleteAddOp();

  auto bwd = f::Backward(net, {});
  ASSERT_TRUE(bwd->IsNetOp());
Y
Yan Chunwei 已提交
280
  auto bwd_net = static_cast<ops::NetOp *>(bwd.get());
Y
Yu Yang 已提交
281
  ASSERT_EQ(3UL, bwd_net->ops_.size());
Y
Yu Yang 已提交
282
  ASSERT_EQ("add", bwd_net->ops_[2]->type_);
Y
Stash  
Yu Yang 已提交
283 284
}

Y
Yu Yang 已提交
285
TEST(Backward, op_register_grad_not_for_network) {
Y
Yu Yang 已提交
286 287 288
  auto fwd = f::OpRegistry::CreateOp(
      "fc", {"X", "W", "b"}, {"mul_out", "add_out", "out1"},
      {{"temporary_index", std::vector<int>{0, 1}}});
D
dongzhihong 已提交
289

Y
Yu Yang 已提交
290 291 292
  ASSERT_THROW(f::OpRegistry::CreateGradOp(*fwd), EnforceNotMet);
}

Y
Yu Yang 已提交
293
TEST(Backward, op_all_input_are_not_need) {
Y
Yu Yang 已提交
294 295 296
  auto fwd = f::OpRegistry::CreateOp("rowwise_add", {"X", "b"}, {"Out"}, {});
  auto backward = f::Backward(*fwd, {"X", "b"});
  ASSERT_TRUE(backward->IsNetOp());
Y
Yan Chunwei 已提交
297
  auto net = static_cast<ops::NetOp *>(backward.get());
Y
Yu Yang 已提交
298 299 300
  ASSERT_TRUE(net->ops_.empty());
}

Y
Yu Yang 已提交
301
TEST(Backward, op_all_output_are_not_need) {
Y
Yu Yang 已提交
302 303 304
  auto fwd = f::OpRegistry::CreateOp("rowwise_add", {"X", "b"}, {"Out"}, {});
  auto backward = f::Backward(*fwd, {"Out"});
  ASSERT_TRUE(backward->IsNetOp());
Y
Yan Chunwei 已提交
305
  auto net = static_cast<ops::NetOp *>(backward.get());
Y
Yu Yang 已提交
306 307 308
  ASSERT_TRUE(net->ops_.empty());
}

Y
Yu Yang 已提交
309
TEST(Backward, op_part_of_output_are_not_need) {
Y
Yu Yang 已提交
310 311 312
  auto fwd = f::OpRegistry::CreateOp("many_output_op", {"X"}, {"Y", "Z"}, {});
  auto backward = f::Backward(*fwd, {"Z"});
  ASSERT_TRUE(backward->IsNetOp());
Y
Yan Chunwei 已提交
313
  auto net = static_cast<ops::NetOp *>(backward.get());
Y
Stash  
Yu Yang 已提交
314
  ASSERT_EQ(net->ops_.size(), 2UL);
Y
Yu Yang 已提交
315 316 317

  auto &fill_zero = *net->ops_[0];
  ASSERT_EQ("fill_zeros_like", fill_zero.type_);
318
  ASSERT_EQ(1UL, fill_zero.inputs_.size());
Y
Yu Yang 已提交
319
  ASSERT_EQ("Z", fill_zero.inputs_[0]);
320
  ASSERT_EQ(1UL, fill_zero.outputs_.size());
321
  ASSERT_EQ(std::string("Z") + f::kZeroVarSuffix, fill_zero.outputs_[0]);
Y
Yu Yang 已提交
322 323 324

  auto &d_many_out = *net->ops_[1];
  ASSERT_EQ("many_output_op_grad", d_many_out.type_);
325
  ASSERT_EQ(1UL + 2UL + 2UL, d_many_out.inputs_.size());  // I/O/OG
326 327 328 329
  ASSERT_EQ(std::string("Z") + f::kZeroVarSuffix,
            d_many_out.Input(f::GradVarName("z")));
  ASSERT_EQ(f::GradVarName("Y"), d_many_out.Input(f::GradVarName("y")));
  ASSERT_EQ(f::GradVarName("X"), d_many_out.Output(f::GradVarName("x")));
Y
Yu Yang 已提交
330 331
}

Y
Yu Yang 已提交
332
TEST(Backward, op_part_of_input_are_not_need) {
333 334
  auto fwd = f::OpRegistry::CreateOp("mul", {"a", "b"}, {"out"}, {});
  auto backward = f::Backward(*fwd, {"a"});
D
dongzhihong 已提交
335
  auto &grad_mul = *backward;
336 337 338
  ASSERT_EQ(grad_mul.type_, "mul_grad");
  ASSERT_EQ(grad_mul.inputs_.size(), 2UL + 1UL + 1UL);
  ASSERT_EQ(grad_mul.outputs_.size(), 2UL);
339 340 341
  ASSERT_EQ(grad_mul.Output(f::GradVarName("A")), f::kEmptyVarName);
  ASSERT_EQ(grad_mul.Output(f::GradVarName("B")), f::GradVarName("b"));
  ASSERT_EQ(grad_mul.Input(f::GradVarName("Out")), f::GradVarName("out"));
342 343 344 345 346
  ASSERT_EQ(grad_mul.Input("A"), "a");
  ASSERT_EQ(grad_mul.Input("B"), "b");
  ASSERT_EQ(grad_mul.Input("Out"), "out");
}

F
fengjiayi 已提交
347
TEST(Backward, linear_net_intermediate_variable_has_no_grad) {
Y
Yan Chunwei 已提交
348
  ops::NetOp net;
Y
Yu Yang 已提交
349 350 351 352 353 354
  net.AddOp(f::OpRegistry::CreateOp("fc", {"x1", "w1", "b1"},
                                    {"mul_out1", "add_out1", "out1"}, {}));
  net.AddOp(f::OpRegistry::CreateOp("fc", {"out1", "w2", "b2"},
                                    {"mul_out2", "tmp_out2", "out2"}, {}));
  net.AddOp(f::OpRegistry::CreateOp("fc", {"out2", "w3", "b3"},
                                    {"mul_out3", "tmp_out3", "out3"}, {}));
355
  net.CompleteAddOp();
356
  auto backward = f::Backward(net, {"mul_out2", "tmp_out2", "out2"});
357
  ASSERT_TRUE(backward->IsNetOp());
Y
Yan Chunwei 已提交
358
  auto bwd_net = static_cast<ops::NetOp *>(backward.get());
359
  ASSERT_EQ(bwd_net->ops_.size(), 3UL);
360
  auto &grad_fc = *bwd_net->ops_[0];
361 362 363 364 365 366 367 368
  EXPECT_EQ(grad_fc.inputs_.size(),
            3UL       /* external input number */
                + 1UL /* external output number*/
                + 1UL /* number of gradient of external output*/
                + 2U /* internal variable number*/);
  EXPECT_EQ(grad_fc.outputs_.size(), 2UL       /* input number of mul*/
                                         + 2UL /* input number of rowwise_add */
                                         + 1UL /* input number of sigmod */);
F
fengjiayi 已提交
369 370 371 372
  EXPECT_EQ(bwd_net->ops_[1]->inputs_.size(), 0UL);
  EXPECT_EQ(bwd_net->ops_[1]->outputs_.size(), 0UL);
  EXPECT_EQ(bwd_net->ops_[2]->inputs_.size(), 0UL);
  EXPECT_EQ(bwd_net->ops_[2]->outputs_.size(), 0UL);
D
dongzhihong 已提交
373
}