test_paddle_model_convertor.py 9.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#!/usr/bin/env python3

# Copyright (c) 2022 CINN Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

17 18 19 20
import argparse
import logging
import os
import sys
21 22
import unittest

23
import numpy as np
24
from cinn.common import DefaultHostTarget, DefaultNVGPUTarget
25 26 27
from cinn.frontend import PaddleModelConvertor
from cinn.runtime import seed as cinn_seed
from op_mappers.op_mapper_test import OpMapperTest
28 29

import paddle
30 31 32 33 34

logging.basicConfig(level=os.environ.get('LOG_LEVEL', 'INFO').upper())
logger = logging.getLogger(name="paddle_model_convertor")

parser = argparse.ArgumentParser(
35 36
    description='Load Paddle Model File and Running at CINN'
)
37
parser.add_argument(
38 39
    "--path", help="The path to load the paddle model", type=str, required=True
)
40 41 42 43 44
parser.add_argument(
    "-m",
    "--model_filename",
    help="The filename of model file, default \"__model__\"",
    type=str,
45 46
    default="__model__",
)
47 48 49
parser.add_argument(
    "-p",
    "--params_filename",
50
    help="The filename of model parameter file, default None, in which each parameter will saved in each file",
51
    type=str,
52 53
    default=None,
)
54 55 56 57 58
parser.add_argument(
    "-cuda",
    "--enable_cuda",
    help="Whether enable CUDA, default True",
    type=bool,
59 60
    default=True,
)
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
args = parser.parse_args()

np.random.seed(1234)
paddle.seed(1234)
cinn_seed(1234)

paddle.enable_static()

# first save paddle model like:
# ```
# import paddle
# paddle.enable_static()

# x = paddle.static.data(name='x', shape=[10, 12, 128, 128], dtype='float32')
# y = paddle.static.data(name='y', shape=[10, 12, 128, 128], dtype='float32')
# prediction = paddle.stack([x, y], 1)

# place = paddle.CUDAPlace(0)

# exe = paddle.static.Executor(place)
# exe.run(paddle.static.default_startup_program())
# prog = paddle.static.default_main_program()

# paddle.fluid.io.save_inference_model("./stack", [x.name, y.name], [prediction], exe, prog)
# ```
# Second load and run model like:
# ```
# python test_paddle_model_convertor.py --path build/thirds/resnet_model -m "__model__" -p "params"
# ```


class TestPaddleModel(OpMapperTest):
    def setUp(self):
        if args.enable_cuda:
            self.target = DefaultNVGPUTarget()
            self.place = paddle.CUDAPlace(0)
        else:
            self.target = DefaultHostTarget()
            self.place = paddle.CPUPlace()

        self.model_dir = args.path
        self.model_filename = args.model_filename
        self.params_filename = args.params_filename

        logger.info(
106 107 108 109
            "Run Model From \"{}\", which model filename is \"{}\", and parameter filename is \"{}\"".format(
                self.model_dir, self.model_filename, self.params_filename
            )
        )
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125

        self.load_paddle_program()
        self.init_case()

    @staticmethod
    def eliminate_unkown_shape(shape):
        return [1 if dim == -1 else dim for dim in shape]

    def get_paddle_op_attrs(self, op):
        attr_map = {}
        for n in op.attr_names:
            attr_map[n] = op.attr(n)

        return attr_map

    def init_case(self):
126
        self.feed_data = {}
127 128 129 130 131
        for i in range(len(self.feed_names)):
            # check no repeat variable
            self.assertNotIn(
                self.feed_names[i],
                self.feed_data,
132 133
                msg="Repeat feed name: " + self.feed_names[i],
            )
134 135 136 137 138 139 140 141 142

            dtype = self.paddleddtype2nptype(self.feed_dtypes[i])
            # random int type data should not limited to [0, 1]
            high = 1 if ("int" not in dtype) else self.feed_shapes[i][0]

            # the paddle's feed list need dict not list
            self.feed_data[self.feed_names[i]] = self.random(
                self.eliminate_unkown_shape(self.feed_shapes[i]),
                dtype,
143 144
                high=high,
            )
145 146 147 148

    def load_paddle_program(self):
        self.exe = paddle.static.Executor(self.place)

149 150 151 152 153 154 155 156 157 158
        [
            self.inference_program,
            self.feed_names,
            self.fetch_targets,
        ] = paddle.fluid.io.load_inference_model(
            dirname=self.model_dir,
            executor=self.exe,
            model_filename=self.model_filename,
            params_filename=self.params_filename,
        )
159 160 161 162 163

        self.param_vars = paddle.load(
            self.model_dir,
            model_filename=self.model_filename,
            params_filename=self.params_filename,
164 165
            return_numpy=True,
        )
166

167 168 169
        logger.debug(msg=f"Program:\n{self.inference_program}")
        logger.debug(msg=f"Param List: {self.param_vars.keys()}")
        logger.debug(msg=f"Feed List: {self.feed_names}")
170 171 172 173 174
        logger.debug(
            msg="Fetch List: {}".format(
                [var.name for var in self.fetch_targets]
            )
        )
175 176 177 178 179 180 181 182 183 184 185 186

        self.feed_shapes = []
        self.feed_dtypes = []

        for var in self.inference_program.list_vars():
            if var.name in self.feed_names:
                self.feed_shapes.append(var.shape)
                self.feed_dtypes.append(var.dtype)

        self.assertEqual(
            len(self.feed_names),
            len(self.feed_shapes),
187 188
            msg="Cannot found some feed var in program!",
        )
189 190 191 192 193 194

    def build_paddle_program(self, target):
        self.paddle_outputs = self.exe.run(
            self.inference_program,
            feed=self.feed_data,
            fetch_list=self.fetch_targets,
195 196
            return_numpy=True,
        )
197
        logger.debug(f"Paddle Result:\n{self.paddle_outputs}")
198 199 200 201 202

    def build_cinn_program(self, target):
        self.assertEqual(
            1,
            self.inference_program.num_blocks,
203 204
            msg="CINN only support single block now",
        )
205

206
        feed_with_param = []
207 208 209 210 211 212

        convertor = PaddleModelConvertor(target)
        for i in range(len(self.feed_names)):
            convertor.create_input(
                dtype=self.paddleddtype2nptype(self.feed_dtypes[i]),
                shape=self.feed_data[self.feed_names[i]].shape,
213 214
                name=self.feed_names[i],
            )
215 216 217 218 219 220
            feed_with_param.append(self.feed_names[i])

        for param_name, param_value in self.param_vars.items():
            convertor.create_input(
                dtype=str(param_value.dtype),
                shape=param_value.shape,
221 222
                name=param_name,
            )
223 224 225 226 227
            feed_with_param.append(param_name)

        for op in self.inference_program.global_block().ops:
            if op.desc.type() == "feed" or op.desc.type() == "fetch":
                continue
228 229 230 231 232 233
            convertor.append_op(
                op.desc.type(),
                op.desc.inputs(),
                op.desc.outputs(),
                self.get_paddle_op_attrs(op),
            )
234 235 236 237 238

        prog = convertor()

        # get cinn input list
        inputs = prog.get_inputs()
239
        logger.debug(f"CINN Input List: {[var.name() for var in inputs]}")
240 241 242
        self.assertEqual(
            len(feed_with_param),
            len(inputs),
243 244
            msg="The paddle's input list not equal to cinn's input list!",
        )
245 246 247 248 249 250 251 252 253 254 255 256

        # map the name the variable
        input_dict = {var.name(): var for var in inputs}

        cinn_inputs = []
        cinn_feed_datas = []
        for name in feed_with_param:
            cinn_name = convertor.get_cinn_name(name)

            self.assertIn(
                cinn_name,
                input_dict,
257 258 259 260 261
                msg="Cannot find variable "
                + cinn_name
                + " in cinn program's input, which are "
                + str(input_dict.items()),
            )
262 263 264 265 266 267 268 269
            cinn_inputs.append(input_dict[cinn_name])

            if name in self.feed_data:
                cinn_feed_datas.append(self.feed_data[name])
            else:
                self.assertIn(
                    name,
                    self.param_vars,
270 271
                    msg="The input variable should in feed list or parameter list",
                )
272 273 274 275 276 277 278 279 280
                cinn_feed_datas.append(self.param_vars[name])

        # get cinn output list
        fetch_names = {var.name for var in self.fetch_targets}
        output_dict = convertor.get_fetch_list(fetch_names)
        cinn_output = [output_dict[var.name] for var in self.fetch_targets]

        # run and get result
        self.cinn_outputs = self.get_cinn_output(
281 282
            prog, target, cinn_inputs, cinn_feed_datas, cinn_output, passes=[]
        )
283

284
        logger.debug(f"CINN Result:\n{self.cinn_outputs}")
285 286

    def test_check_results(self):
6
6clc 已提交
287 288
        # TODO(6clc): There is a random accuracy problem,
        #             temporarily adjust max_absolute_error from 1e-6 to 1e-3
289 290 291
        self.check_outputs_and_grads(
            max_relative_error=1e-2, max_absolute_error=1e-3
        )
292 293 294 295 296 297 298


if __name__ == "__main__":
    tester = unittest.defaultTestLoader.loadTestsFromTestCase(TestPaddleModel)
    test_runer = unittest.TextTestRunner()
    res = test_runer.run(tester)
    sys.exit(not res.wasSuccessful())