vae_train.py 5.7 KB
Newer Older
C
cxysteven 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import random
import numpy as np
import cPickle
import sys, os
from PIL import Image

from paddle.trainer.config_parser import parse_config
from paddle.trainer.config_parser import logger
import py_paddle.swig_paddle as api
import dataloader
import matplotlib.pyplot as plt


def plot_samples(samples):
    fig = plt.figure(figsize=(4, 4))
    gs = gridspec.GridSpec(4, 4)
    gs.update(wspace=0.05, hspace=0.05)
    for i, sample in enumerate(samples):
        plt.subplot(gs[i])
        plt.axis('off')
        plt.imshow(sample.reshape(28, 28), cmap='Greys_r')

    return fig


def CHECK_EQ(a, b):
    assert a == b, "a=%s, b=%s" % (a, b)


def get_fake_samples(generator_machine, batch_size, noise):
    gen_inputs = api.Arguments.createArguments(1)
    gen_inputs.setSlotValue(0, api.Matrix.createDenseFromNumpy(noise))
    gen_outputs = api.Arguments.createArguments(0)
    generator_machine.forward(gen_inputs, gen_outputs, api.PASS_TEST)
    fake_samples = gen_outputs.getSlotValue(0).copyToNumpyMat()
    return fake_samples


def copy_shared_parameters(src, dst):
    '''
    copy the parameters from src to dst
    :param src: the source of the parameters
    :type src: GradientMachine
    :param dst: the destination of the parameters
    :type dst: GradientMachine
    '''
    src_params = [src.getParameter(i) for i in xrange(src.getParameterSize())]
    src_params = dict([(p.getName(), p) for p in src_params])

    for i in xrange(dst.getParameterSize()):
        dst_param = dst.getParameter(i)
        src_param = src_params.get(dst_param.getName(), None)
        if src_param is None:
            continue
        src_value = src_param.getBuf(api.PARAMETER_VALUE)
        dst_value = dst_param.getBuf(api.PARAMETER_VALUE)
        CHECK_EQ(len(src_value), len(dst_value))
        dst_value.copyFrom(src_value)
        dst_param.setValueUpdated()


def find(iterable, cond):
    for item in iterable:
        if cond(item):
            return item
    return None


def get_layer_size(model_conf, layer_name):
    layer_conf = find(model_conf.layers, lambda x: x.name == layer_name)
    assert layer_conf is not None, "Cannot find '%s' layer" % layer_name
    return layer_conf.size


def main():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--use_gpu", default="1", help="1 means use gpu for training")
    parser.add_argument("--gpu_id", default="0", help="the gpu_id parameter")
    args = parser.parse_args()
    use_gpu = args.use_gpu
    assert use_gpu in ["0", "1"]

    if not os.path.exists("./samples/"):
        os.makedirs("./samples/")

    if not os.path.exists("./params/"):
        os.makedirs("./params/")

    api.initPaddle('--use_gpu=' + use_gpu, '--dot_period=10',
                   '--log_period=1000', '--gpu_id=' + args.gpu_id,
                   '--save_dir=' + "./params/")

    conf = "vae_conf.py"

    trainer_conf = parse_config(conf, "is_generating=False")
    gener_conf = parse_config(conf, "is_generating=True")

    batch_size = trainer_conf.opt_config.batch_size

    noise_dim = get_layer_size(gener_conf.model_config, "noise")

    mnist = dataloader.MNISTloader(batch_size=batch_size)
    mnist.load_data()

    training_machine = api.GradientMachine.createFromConfigProto(
        trainer_conf.model_config)

    generator_machine = api.GradientMachine.createFromConfigProto(
        gener_conf.model_config)

    trainer = api.Trainer.create(trainer_conf, training_machine)

    trainer.startTrain()

    for train_pass in xrange(100):
        trainer.startTrainPass()
        mnist.reset_pointer()
        i = 0
        it = 0
        while mnist.pointer != 0 or i == 0:
            X = mnist.next_batch().astype('float32')

            inputs = api.Arguments.createArguments(1)
            inputs.setSlotValue(0, api.Matrix.createDenseFromNumpy(X))

            trainer.trainOneDataBatch(batch_size, inputs)

            if it % 1000 == 0:

                outputs = api.Arguments.createArguments(0)
                training_machine.forward(inputs, outputs, api.PASS_TEST)
                loss = np.mean(outputs.getSlotValue(0).copyToNumpyMat())
                print "\niter: {}".format(str(it).zfill(3))
                print "VAE loss: {}".format(str(loss).zfill(3))

                #Sync parameters between networks (GradientMachine) at the beginning
                copy_shared_parameters(training_machine, generator_machine)

                z_samples = np.random.randn(batch_size,
                                            noise_dim).astype('float32')
                samples = get_fake_samples(generator_machine, batch_size,
                                           z_samples)

                #Generating the first 16 images for a picture. 
                figure = plot_samples(samples[:16])
                plt.savefig(
                    "./samples/{}_{}.png".format(
                        str(train_pass).zfill(3), str(i).zfill(3)),
                    bbox_inches='tight')
                plt.close(figure)
                i += 1
            it += 1

        trainer.finishTrainPass()
    trainer.finishTrain()


if __name__ == '__main__':
    main()