test_complex_reshape.py 3.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle.fluid as fluid
16
import paddle
17
from paddle import complex as cpx
18 19 20 21 22 23
import paddle.fluid.dygraph as dg
import numpy as np
import unittest


class TestComplexReshape(unittest.TestCase):
24 25 26 27 28 29
    def setUp(self):
        self._dtypes = ["float32", "float64"]
        self._places = [paddle.CPUPlace()]
        if fluid.core.is_compiled_with_cuda():
            self._places.append(paddle.CUDAPlace(0))

30
    def test_case1(self):
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
        for dtype in self._dtypes:
            x_np = np.random.randn(
                2, 3, 4).astype(dtype) + 1j * np.random.randn(2, 3,
                                                              4).astype(dtype)
            shape = (2, -1)
            for place in self._places:
                with dg.guard(place):
                    x_var = dg.to_variable(x_np)
                    y_var = cpx.reshape(x_var, shape)
                    y_np = y_var.numpy()
                    np.testing.assert_allclose(np.reshape(x_np, shape), y_np)

    def test_case2(self):
        for dtype in self._dtypes:
            x_np = np.random.randn(
                2, 3, 4).astype(dtype) + 1j * np.random.randn(2, 3,
                                                              4).astype(dtype)
            shape = (0, -1)
            shape_ = (2, 12)
            for place in self._places:
                with dg.guard(place):
                    x_var = dg.to_variable(x_np)
                    y_var = cpx.reshape(x_var, shape, inplace=True)
                    y_np = y_var.numpy()
                    np.testing.assert_allclose(np.reshape(x_np, shape_), y_np)
56

57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
    def test_case3(self):
        for dtype in self._dtypes:
            x_np = np.random.randn(2, 3, 4) + 1j * np.random.randn(2, 3, 4)
            shape = (2, -1)
            for place in self._places:
                with dg.guard(place):
                    x_var = paddle.Tensor(
                        value=x_np,
                        place=fluid.framework._current_expected_place(),
                        persistable=False,
                        zero_copy=None,
                        stop_gradient=True)
                    y_var = fluid.layers.reshape(x_var, shape)
                    y_np = y_var.numpy()
                    np.testing.assert_allclose(np.reshape(x_np, shape), y_np)
72

73 74 75 76 77
    def test_case4(self):
        for dtype in self._dtypes:
            x_np = np.random.randn(2, 3, 4) + 1j * np.random.randn(2, 3, 4)
            shape = (0, -1)
            shape_ = (2, 12)
78

79 80 81 82 83 84 85 86 87 88 89
            for place in self._places:
                with dg.guard(place):
                    x_var = paddle.Tensor(
                        value=x_np,
                        place=fluid.framework._current_expected_place(),
                        persistable=False,
                        zero_copy=None,
                        stop_gradient=True)
                    y_var = fluid.layers.reshape(x_var, shape)
                    y_np = y_var.numpy()
                    np.testing.assert_allclose(np.reshape(x_np, shape_), y_np)
90 91 92 93


if __name__ == "__main__":
    unittest.main()