operator.h 7.6 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <boost/variant.hpp>
#include <string>
#include <unordered_map>
#include <vector>

Q
qijun 已提交
22 23
#include "paddle/framework/attr_checker.h"
#include "paddle/framework/op_desc.pb.h"
Y
Yan Chunwei 已提交
24
#include "paddle/framework/op_proto.pb.h"
Q
qijun 已提交
25 26 27 28 29
#include "paddle/framework/scope.h"
#include "paddle/framework/tensor.h"
#include "paddle/platform/device_context.h"
#include "paddle/platform/place.h"
#include "paddle/utils/Error.h"
Q
Qiao Longfei 已提交
30 31 32 33

namespace paddle {
namespace framework {

Q
qijun 已提交
34 35 36 37
template <typename T>
struct EigenDeviceConverter;

template <>
Q
qijun 已提交
38
struct EigenDeviceConverter<platform::CPUPlace> {
Q
qijun 已提交
39 40 41 42 43
  using EigenDeviceType = Eigen::DefaultDevice;
};

#ifndef PADDLE_ONLY_CPU
template <>
Q
qijun 已提交
44
struct EigenDeviceConverter<platform::GPUPlace> {
Q
qijun 已提交
45 46 47 48
  using EigenDeviceType = Eigen::GpuDevice;
};
#endif

Q
Qiao Longfei 已提交
49
class OperatorBase;
Q
Qiao Longfei 已提交
50
using OperatorPtr = std::shared_ptr<OperatorBase>;
Q
Qiao Longfei 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
/**
 * OperatorBase has the basic element that Net will call to do computation.
 * Only CreateOperator from OpRegistry will new Operator directly. User
 * should always construct a proto message OpDesc and call
 * OpRegistry::CreateOp(op_desc) to get an Operator instance.
 */
class OperatorBase {
 public:
  virtual ~OperatorBase() {}

  template <typename T>
  inline const T& GetAttr(const std::string& name) const {
    PADDLE_ENFORCE(attrs_.count(name) != 0, "%s should be in AttributeMap",
                   name);
    return boost::get<T>(attrs_.at(name));
  }

  std::string DebugString() const;

Q
Qiao Longfei 已提交
70 71 72 73
  /// Init will be called after CreateOperator, you can put some initialization
  /// logic here.
  virtual void Init() {}

Q
Qiao Longfei 已提交
74 75
  /// InferShape infer the size of Variables used by this Operator with
  /// information inside scope
Q
Qiao Longfei 已提交
76
  virtual void InferShape(const ScopePtr& scope) const = 0;
Q
Qiao Longfei 已提交
77 78

  /// Net will call this function to Run an op.
Q
Qiao Longfei 已提交
79
  virtual void Run(const ScopePtr& scope,
Y
Yu Yang 已提交
80 81
                   const platform::DeviceContext& dev_ctx) const = 0;

Y
Yan Chunwei 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95
  // Get a input with argument's name described in `op_proto`
  const std::string& Input(const std::string& name) const;
  // Get a input which has multiple variables.
  // TODO add a vector_view to prevent memory copy.
  std::vector<std::string> Inputs(const std::string& name) const;
  // Get a output with argument's name described in `op_proto`
  const std::string& Output(const std::string& name) const;
  // Get an output which has multiple variables.
  // TODO add a vector_view to prevent memory copy.
  std::vector<std::string> Outputs(const std::string& name) const;

  // init in_out_idxs_ to accelerate argument's offset lookup.
  void CreateInOutOffsetMap(const OpProto& proto);

Q
Qiao Longfei 已提交
96
 public:
Q
Qiao Longfei 已提交
97
  std::string type_;
Q
Qiao Longfei 已提交
98 99 100
  std::vector<std::string> inputs_;
  std::vector<std::string> outputs_;
  AttributeMap attrs_;
Y
Yan Chunwei 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
  // store the arguments' offset described in op_desc.
  std::unordered_map<std::string, int> in_out_idxs_;
};

class KernelContext {
 public:
  KernelContext(const OperatorBase* op, const std::shared_ptr<Scope>& scope,
                const platform::DeviceContext& device_context)
      : op_(*op), scope_(scope), device_context_(device_context) {}

  const Variable* Input(int index) const {
    return scope_->GetVariable(op_.inputs_[index]);
  }

  Variable* Output(int index) const {
    return scope_->GetVariable(op_.outputs_[index]);
  }

  const Variable* Input(const std::string& name) const {
    return scope_->GetVariable(op_.Input(name));
  }

  const Variable* Output(const std::string& name) const {
    return scope_->GetVariable(op_.Output(name));
  }

  const std::vector<const Variable*> Inputs(const std::string& name) const {
    auto names = op_.Inputs(name);
    std::vector<const Variable*> res;
    std::transform(
        names.begin(), names.end(), res.begin(),
        [this](const std::string& name) { return scope_->GetVariable(name); });
    return res;
  }

  const std::vector<const Variable*> Outputs(const std::string& name) const {
    auto names = op_.Outputs(name);
    std::vector<const Variable*> res;
    std::transform(
        names.begin(), names.end(), res.begin(),
        [this](const std::string& name) { return scope_->GetVariable(name); });
    return res;
  }

Q
qijun 已提交
145 146 147 148 149 150 151
  template <typename PlaceType,
            typename DeviceType =
                typename EigenDeviceConverter<PlaceType>::EigenDeviceType>
  DeviceType* GetEigenDevice() const;

  platform::Place GetPlace() const { return device_context_.GetPlace(); }

Y
Yan Chunwei 已提交
152 153 154
  const OperatorBase& op_;
  const std::shared_ptr<Scope>& scope_;
  const platform::DeviceContext& device_context_;
Q
Qiao Longfei 已提交
155 156
};

Q
qijun 已提交
157 158
class OpKernel {
 public:
Q
qijun 已提交
159 160 161 162 163 164 165
  /**
   * KernelContext is the only parameter of Kernel Run function.
   * Run will get input/output variables, state such as momentum and
   * device resource such as CUDA stream, cublas handle, etc. from
   * KernelContext. User should construct it before run the Operator.
   */

Y
Yu Yang 已提交
166 167 168 169 170
  virtual void Compute(const KernelContext& context) const = 0;

  virtual ~OpKernel() {}
};

Y
Yu Yang 已提交
171 172 173 174 175 176 177 178 179 180 181 182 183
template <typename T>
struct VarToTensor {};

template <>
struct VarToTensor<Tensor*> {
  Tensor* operator()(Variable* var) { return var->GetMutable<Tensor>(); }
};

template <>
struct VarToTensor<const Tensor*> {
  const Tensor* operator()(Variable* var) { return &var->Get<Tensor>(); }
};

Q
Qiao Longfei 已提交
184 185
class OperatorWithKernel : public OperatorBase {
 public:
Y
Yu Yang 已提交
186 187
  struct OpKernelKey {
    platform::Place place_;
Q
Qiao Longfei 已提交
188

Y
Yu Yang 已提交
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
    OpKernelKey() = default;
    OpKernelKey(const platform::DeviceContext& dev_ctx) {
      place_ = dev_ctx.GetPlace();
    }

    bool operator==(const OpKernelKey& o) const { return place_ == o.place_; }
  };

  struct OpKernelHash {
    std::hash<bool> hash_;
    size_t operator()(const OpKernelKey& key) const {
      return hash_(platform::is_gpu_place(key.place_));
    }
  };

  using OpKernelMap =
      std::unordered_map<OpKernelKey, std::unique_ptr<OpKernel>, OpKernelHash>;
Q
Qiao Longfei 已提交
206

Q
Qiao Longfei 已提交
207
  void Run(const ScopePtr& scope,
Y
Yu Yang 已提交
208
           const platform::DeviceContext& dev_ctx) const final {
Q
Qiao Longfei 已提交
209
    auto& opKernel = AllOpKernels().at(type_).at(OpKernelKey(dev_ctx));
Y
Yan Chunwei 已提交
210
    opKernel->Compute(KernelContext(this, scope, dev_ctx));
Q
Qiao Longfei 已提交
211 212
  }

Y
Yu Yang 已提交
213 214 215 216
  static std::unordered_map<std::string /* op_type */, OpKernelMap>&
  AllOpKernels() {
    static std::unordered_map<std::string, OpKernelMap> g_all_op_kernels;
    return g_all_op_kernels;
Y
Yu Yang 已提交
217
  }
Y
Yan Chunwei 已提交
218

Y
Yu Yang 已提交
219 220 221 222 223 224
  void InferShape(const std::shared_ptr<Scope>& scope) const final {
    std::vector<const Tensor*> ins;
    VarNamesToTensors(scope, inputs_, &ins);
    std::vector<Tensor*> outs;
    VarNamesToTensors(scope, outputs_, &outs);
    InferShape(ins, outs);
Y
Yu Yang 已提交
225
  };
Y
Yu Yang 已提交
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246

 private:
  template <typename T>
  void VarNamesToTensors(const std::shared_ptr<Scope>& scope,
                         const std::vector<std::string>& var_names,
                         std::vector<T>* container) const {
    container->reserve(var_names.size());
    VarToTensor<T> convert;
    for (auto& name : var_names) {
      auto var = scope->GetVariable(name);
      if (var != nullptr) {
        container->push_back(convert(var));
      } else {
        container->push_back(nullptr);
      }
    }
  }

 protected:
  virtual void InferShape(const std::vector<const Tensor*>& inputs,
                          const std::vector<Tensor*>& outputs) const = 0;
Q
Qiao Longfei 已提交
247 248 249 250
};

}  // namespace framework
}  // namespace paddle