sparse_weight_embedding_kernel.cc 4.0 KB
Newer Older
P
phlrain 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/embedding_kernel.h"
#include "paddle/phi/kernels/funcs/embedding_util.h"

#include "paddle/phi/backends/cpu/cpu_context.h"
P
phlrain 已提交
19
#include "paddle/phi/common/data_type.h"
P
phlrain 已提交
20
#include "paddle/phi/core/kernel_registry.h"
P
phlrain 已提交
21
#include "paddle/phi/core/utils/data_type.h"
P
phlrain 已提交
22 23 24 25 26
#include "paddle/phi/kernels/funcs/blas/blas.h"

namespace phi {

template <typename T, typename Context>
P
phlrain 已提交
27 28 29 30 31 32
struct EmbeddingCPUSparseFunctor {
  EmbeddingCPUSparseFunctor(const Context& dev_ctx,
                            const DenseTensor& input,
                            const SelectedRows& weight,
                            int64_t padding_idx,
                            DenseTensor* out)
P
phlrain 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
      : dev_ctx_(dev_ctx),
        input_(input),
        weight_(weight),
        out_(out),
        padding_idx_(padding_idx) {}

  template <typename IdT>
  void apply() {
    auto ids = CopyIdsToVector<IdT, int64_t>(input_);
    auto ids_numel = static_cast<int64_t>(ids.size());

    const auto& table_t = weight_;
    auto output_t = out_;
    int64_t row_width = table_t.value().dims()[1];
    const auto* table = table_t.value().template data<T>();
P
phlrain 已提交
48
    auto* output = dev_ctx_.template Alloc<T>(output_t);
P
phlrain 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
    auto input_data_type =
        paddle::framework::TransToProtoVarType(table_t.value().dtype());

    for (int64_t i = 0; i < ids_numel; ++i) {
      if (padding_idx_ != kNoPadding && ids[i] == padding_idx_) {
        memset(output + i * row_width, 0, row_width * sizeof(T));
      } else {
        PADDLE_ENFORCE_GE(
            ids[i],
            0,
            phi::errors::InvalidArgument(
                "Variable value (input) of OP(fluid.layers.embedding) "
                "expected >= 0. But received %ld",
                ids[i]));
        auto id_index = table_t.Index(ids[i]);
        PADDLE_ENFORCE_GE(
            id_index,
            0,
            phi::errors::InvalidArgument(
                "the input key should be exists. But received %d.", id_index));

        if (input_data_type == paddle::framework::proto::VarType::BF16) {
          memcpy(output + i * row_width,
                 table + id_index * row_width,
                 row_width * sizeof(T));
        } else {
          auto blas = phi::funcs::GetBlas<phi::CPUContext, T>(dev_ctx_);
          blas.VCOPY(
              row_width, table + id_index * row_width, output + i * row_width);
        }
      }
    }
  }

 private:
  const Context& dev_ctx_;
  const DenseTensor& input_;
  const SelectedRows& weight_;
  DenseTensor* out_;
  int64_t padding_idx_;
};

template <typename T, typename Context>
void SparseWeightEmbeddingKernel(const Context& ctx,
                                 const DenseTensor& input,
                                 const SelectedRows& weight,
                                 int64_t padding_idx,
                                 DenseTensor* out) {
P
phlrain 已提交
97
  EmbeddingCPUSparseFunctor<T, Context> functor(
P
phlrain 已提交
98
      ctx, input, weight, padding_idx, out);
P
phlrain 已提交
99 100 101 102 103 104 105 106

  if (input.dtype() == phi::DataType::INT32) {
    functor.template apply<int>();
  } else if (input.dtype() == phi::DataType::INT64) {
    functor.template apply<int64_t>();
  } else {
    PADDLE_THROW("emebdding input only support int32 and int64");
  }
P
phlrain 已提交
107 108 109 110
}

}  // namespace phi

P
phlrain 已提交
111
PD_REGISTER_KERNEL(sparse_weight_embedding,
P
phlrain 已提交
112 113 114 115 116 117
                   CPU,
                   ALL_LAYOUT,
                   phi::SparseWeightEmbeddingKernel,
                   float,
                   double,
                   phi::dtype::bfloat16) {}